構造物の応答速度とアクチュエータのストロークに基づく AMD 制御式の最適化

○谷原 康介*1 谷 明勲*2
山邊 友一郎*3

キーワード:制振 AMD 最適化 遺伝的アルゴリズム

1. はじめに

本報は、構造物に設置した付加質量に制御力を作用させ、 その反力により構造物の応答を制御する AMD 方式アクテ ィブ制御振動システムを対象とする。本報では、「ストロ ークは装置の限界を超えない限り、より大きな範囲で変動 した方が、より大きな仕事を構造物に作用させうる」とい う考えに基づいた制御アルゴリズムを提案する。また、こ の制御アルゴリズムに適した AMD システムの構造特性と 制御式内のパラメータを、遺伝的アルゴリズムを用いて最 適化し、シミュレーションによってこの制御アルゴリズム の特徴と有効性を検討する。

2. 対象構造物とシミュレーションの基本設定

図 1(a)に示す、頂部に AMD を 1 基設置した 5 層構造物 を、図 1 (b)のように 6 質点系にモデル化したものを対象に、 線形加速度法(Newmark のβ法: β=1/6)を用いて時刻歴応 答解析を行う。対象構造物の構造特性値を表 1 に示す。

最適化したモデルの応答の評価は、5層頂部の制御時と 非制御時の最大応答変位の比を応答低減比として扱う。ま た、アクチュエータの制御に要する時間として、制御力算 定のための応答を計測してから、加力するまでに1ステッ プの時刻遅れを考慮する。

図1 対象構造物とモデル化

表1 構造特性値

届数	層質量	層剛性	層減衰定数	一次固有	
/a X	т	k	h	周期	
5	80(t)	4.00×104	0.01	1.13	
5		(kN/m)	0.01	(sec)	
付加質	付加剛性	付加減衰		最大スト	
量 m_d	k_d	c_d	最大出力	ローク S_{max}	
量 m_d	k _d 具演化計象	c _d 导演化対象	最大出力 50	ロークS _{max} ±60	

3. アクチュエータのストロークの制限

 $x_d - x_s$

アクチュエータのストローク*S*は、図 2 に示すように、 付加質量 m_d の基礎からの相対変位 x_d とAMD設置層の基礎 からの相対変位 x_c を用いて、式(1)で表される。

(1)

慣性反力型 AMD システムでは、制御力 fを構造物に作 用させるとき、付加質量にその反力-fが作用する。これに よってストロークが変化するため、ストロークが装置の限 界に近いときには、ストロークが増大する方向に制御力を 作用させることはできない。反対に、制御力を作用させる ことによってストロークが減少するときには、大きな制御 力を作用させることができる。

本アルゴリズムでは、この考えに基づき、制御力を作用 させる時刻におけるストロークが、これから作用させる制 御力によって変化する方向と反対方向になるように制御 する。この、制御力を作用させる時刻におけるストローク の目指す値を*S*。とし、これを最適化対象の一つとする。*S*。は 大きいほど大きな制御力を作用させられる。

制御時の応答ストロークは必ずしもこの目標値S_oの値 をとるわけではなく、制御誤差を考慮する必要がある。こ のため、S_oがAMDシステムの最大ストロークS_{max}に近いと、 ストロークオーバーの危険性も大きくなる。

4. 加力時刻

ストローク:

式(2)、(3)は、アクチュエータが時間 Tの間、一方向に

制御力 f(t)を作用させるときに、制御力を受ける 2 つの質 点に作用する仕事である。本システムでは、AMD 設置層 に作用させる仕事(式(3))によって、構造物の応答速度を低 減する。したがってこの仕事をより大きくすることは、基 本的に制御効果の向上につながる。

ー方、式(2)で表される付加質量に作用する仕事は、極力 小さくする必要がある。なぜなら、付加質量は構造物の層 に比べると質量が小さいため、仕事を受けた場合に変位*x*_d がより急激に変化し、範囲内に収めるべきストローク(式 (1))に大きく影響するからである。

そこで、本制御では付加質量に作用する仕事(式(2))を抑 えたまま AMD 設置層に作用させる仕事(式(3))を大きくす るために、AMD 設置層の速度 \dot{x}_s が極大の時刻に集中し て制御力を作用させることとする。

付加質量に作用する仕事 : $\int_{T} -f(t) \cdot \dot{x}_{d} dt$ (2) AMD 設置層に作用する仕事 : $\int_{T} -f(t) \cdot \dot{x}_{s} dt$ (3)

6. 作用させる仕事量の決定

以上の内容から、本制御では、AMD設置層の速度が極 大の時刻にアクチュエータが作用させる仕事量を、次に AMD設置層の速度が極大になる時刻に、ストロークが目 標値S_eになるように決定する必要がある。

ある時刻に作用させるアクチュエータの仕事量と、 AMD 設置層の速度が極大になる時刻や、そのときのスト ロークの値との関係を定式化するのは難しいため、本シス テムでは、アクチュエータの仕事量を変化させた仮想的な 振動シミュレーションを繰り返すことで、この仕事量を決 定している。

この仮想的なシミュレーションでは、アクチュエータが 制御力を作用させる直前のステップにおいて、その時刻の 構造物の応答状態を模したモデルを考え、この振動系に地 動加速度が作用しないという仮定の下、アクチュエータに ある大きさの仕事量を作用させ、次にAMD設置層の速度 が極大になる時刻tendまで時刻歴応答解析を行う。

仮想シミュレーションが終了する時刻t_{end}に、モデルのス トロークが目標値S_oを超えていれば、アクチュエータが仮 想モデルに作用させる仕事量を小さくし、仮想のシミュレ ーションを繰り返す。逆に、仮想シミュレーションの終了 時の応答ストロークが目標値S_o以下ならば、次に行う仮想 シミュレーションで作用させる仕事量を大きくする。

図3は、この過程を表した概念図である。図中縦座標が 仮想シミュレーションに入力するアクチュエータの仕事 量である。仮想シミュレーションを繰り返すごとに、アク チュエータの仕事量の増減幅を1/2にしていくことで、ス トローク目標値S_oを与える仕事量の精算値を決定する。

本報告では、事前の検討から作用させる仕事量は 0.0~ 0.4fmgの間の値を取るものとし、仮想シミュレーションの 繰り返し回数は5回とした。これは、入力地動加速度の刻 み時間の最小値 0.01 秒の間にこの仮想シミュレーション の繰り返し処理を終了させるためである。

図3 仮想シミュレーション繰り返し処理の概念図

この方法で決定された仕事量が作用するように、制御力 と、制御力を作用させる時間を決定する必要があるが、本 報では、制御力の大きさは常に装置の最大値fmaxとし、作 用させる時間の長さで作用させる仕事量を調節する。これ は、4章に示したとおり、アクチュエータがする仕事を、 AMD設置層の速度が極大になる時刻に集中させるためで ある。ただし、本シミュレーションではシミュレーション の刻み時間Atに対して、fmax・At以下の仕事量を作用させる 場合は、仕事を作用させる時間をAtとし、制御力をfmax以下 の値として所定の仕事量を作用させる。

6. ストロークオーバーを防ぐための制御

3章に示した通り、本制御は、ストロークがストローク目 標値の範囲 $\pm S_o$ で推移するように、アクチュエータの制御 力によってストロークの使用域を広げる制御であるため、 入力地震動の規模が大きい場合、応答ストロークが装置の 最大ストロークを超えてしまう可能性がある。このため、 制御中の時刻tにおいて、応答ストロークS(t)とその単位時 間当たりの変化量 $\dot{S}(t)$ を変数とした、ストロークオーバー を判定する式(4)を考える。この値が、あらかじめ設定した ストロークの危険値 S_{stop} を超えた場合には、ストローク応 答が S_{stop} を超えつつあるとみなし、ストロークをそれ以上 大きくしないために制御力を作用させる。 S_{stop} はアクチュ エータのストロークの最大値 S_{may} 以下の値とする。

$\left(\frac{m \cdot m_d}{m + m_d} \cdot \frac{\left \dot{S}(t)\right }{2f_{\max}} + \Delta t\right) \dot{S}(t) + S(t) > S$	S_{stop} (4)
---	----------------

7. 最適化するパラメータ

以上のように、本制御ではストローク目標値S_oやS_{stop}の 値を元に作用させる仕事量が決定される。本報では、この 値が構造物の応答に応じて変化するように設定した。

図 4 の横軸はAMD設置層の速度極大が判定された時刻 における、AMD設置層の速度の大きさである。この値が v_{ol} 以上である場合に、この横軸の値に対応する縦軸のスト ローク目標値を決定する。AMD設置層の速度が v_{ol} から v_{o2} の間にあるときは、ストローク目標値は S_{ol} から S_{o2} の間の 値をとり、AMD設置層の速度がそれ以上になるときには、 ストローク目標値は S_{o2} で一定としている。6章に示した S_{stop} は、構造物の応答によらず一定値とした。

本報では、遺伝的アルゴリズム(GA)を用いて、図4中の 5つの制御式内部で用いる数値と、AMD装置の付加剛性 k_d と付加減衰 c_d の計7つのパラメータを最適化する。各パ ラメータのとりうる値の範囲は表2のとおりである。

最適化対象	最小値	最大値	段階
k_d (kN/m)	50	150	11
c_d (kNs/m)	1	21	11
v_{ol} (cm/s)	0	10	11
v_{o2} (cm/s)	0	40	11
$S_{ol}(cm)$	0	30	11
S_{o2} (cm)	10	60	11
S_{stop} (cm)	40	80	11

表2 最適化対象パラメータの範囲

8. 評価指標

ある地震波に対するシミュレーション結果に対して、以下のev₁、ev₂、ev₃の3つの評価指標を考える。

• ev_1 : ストローク制限

$$ev_{1} = \begin{cases} 0 & \left(\max|S(t)| > S_{\max}\right) \\ 1 & \left(\max|S(t)| < S_{\max}\right) \end{cases}$$
(5)

Smax:AMD装置のストロークの限界値

ev₁(式(5))は、最大応答ストロークが装置の限界を超えて いないかどうかを評価する。ストロークが装置の範囲内で ある限り、その大小に関わらずこの評価値は1となる。

● ev₂: 応答低減比

$$ev_{2} = \frac{\max_{t} |x_{non-control}(5,t)|}{\max_{t} |x_{control}(5,t)|}$$
(6)

xnon-control(5,1):制御時の構造物5層目の時刻tにおける応答変位
xneutral(5,1):非制御時の構造物5層目の時刻tにおける応答変位
ev2(式(6))は、構造物最上層の最大応答変位の低減を評価
する。ev2が大きいほど、応答の低減効果が大きい。

● ev3: アクチュエータの仕事率

$$ev_{3} = \frac{120 \cdot f_{\max}}{\max_{t} \left(\int_{0.2} |f(t) \cdot (S(t) - S(t - \Delta t))| dt \right) + 60 \cdot f_{\max}}$$
(7)

式(7)に示すev₃の分母の第1項は、アクチュエータが瞬間的に発揮できる仕事量を表している。ev₃は、0.0~2.0の間の値を取り、この値が大きいほど、AMDの駆動システムの規模を小さくすることができる。

以上3つの評価指標の積を、評価値Evとする(式(8))。応 答ストロークが装置の限界を超える場合には、ev₁が0とな り、他の評価指標の値に関わらず、Evも0となる。

$$Ev = ev_1 \cdot ev_2 \cdot ev_3 \tag{8}$$

本報では、複数の地震波に対して最適化を行うため、各 地震波に対して求めた *Ev* の積を、最適化に用いる統合評 価値とし、これを最大化する。

9. 対象地震動

最大加速度を100gal に基準化した、表3に示す3つの 地震波を最適化に使用した。表中の非制御時最大応答変位 は、100gal に基準化した。また、これらの地震波の非制 御時の5層目の最大応答変位も表3中に示す。

表3 最適化波一覧 地震波名 観測 非制御時最大 観測間隔 方向 (観測地) 年 応答変位(cm) (sec) El centro 1940 NS 7.50 0.02 JMA Kobe 1995 NS 8.68 0.02 NS 12.91 0.01 Hachinohe 1964

最適化の結果として得られるパラメータの制御効果を、

表4に示す100galに基準化した6つの地震動で検証した。

表 4 使					
観測地	地震波名	方向	非制御時最大 応答変位(cm)	観測間 隔(sec)	
비미	新潟県中越	NS	3.29	0.01	
七尾	能登半島沖	EW	6.89	0.01	
尾鷲	東海道沖	EW	1.37	0.01	
浦河	十勝沖	EW	10.46	0.01	
輪島	能登半島沖	EW	7.11	0.01	

10. GAの初期設定

GAの初期設定を表5に示す。

表 5	GA	の設定
-----	----	-----

1世代の個体数	50
GA 終了条件	最良個体の評価値が 300 世代継続
突然変異率	6.0%

また、1個体のエリート保存を適用し、1世代に同じ遺 伝子の個体が2つ以上あるとき、1つを残して遺伝子を突 然変異させるように設定した。

11. 最適化結果

進化曲線を図5に、最適化結果を表6に示す。最適化され たパラメータ設定の、最適化波と検証波に対するシミュレ ーション結果をそれぞれ表7、表8に示す。表中の仕事率 は、式(7)中で求める 0.2 秒間にアクチュエータが作用させ る仕事量の最大値を、1 秒当たりの仕事量に換算したもの である。また、最適化されたパラメータを用いた El Centro 波に対する時刻歴応答変位を図 6 に、制御時の応答速度と ストローク、制御力との関係を図 7 に示す。

ある 是 適化 結里

k_d (kN/m)	100.0		S_{ol} (cm)	27.0
c_d (kNs/m)	3.0		S_{o2} (cm)	40.0
v_{ol} (cm/s)	7.0		S_{stop} (cm)	56.0
v_{o2} (cm/s)	28.0			

	El Centro	JMA Kobe	Hachinohe
ev_l	1.0	1.0	1.0
ev_2	2.10	1.42	1.35
ev ₃	1.44	1.31	1.44
Ev	3.03	1.87	1.94
最大応答ストロ ーク(cm)	34.8	34.7	37.3
5 層最大応答変 位低減比(%)	47.5	70.4	74.0
仕事率(kJ/s)	58.5	77.6	58.5
5 層最大応答速 度(cm/s)	24.1	35.0	22.8

表7 最適化波に対するシミュレーション結果

図 6 El Centro 波に対する 5 層目応答変位 12. 考察及び結

図7より、AMD 設置層の速度が極大の時刻に制御力が 集中して作用し、同時に、ストロークが制御力によって変 化する向きと反対方向の値をとっていることがわかる。

また、最適化したパラメータに対する各地震波の最大応 答ストロークが、ストローク目標値の最大値So2=40cmに

近い値をとっている。以上のことから、3 章から6 章に示 した制御が実現できていることがわかる。

最適化波の制御時の応答速度の範囲は、0~35.0cm/sで あった。これに対して、制御力を作用させるかどうかの境 界値であるv_{ol}が 7.0cm/s、ストローク目標値を増加させる 範囲の上限であるv_{o2}が 28.0cm/sとなったことから、最適 化結果は、応答が最大になるときに最大の仕事を作用させ、 応答が小さいときにはアクチュエータの仕事量を抑える 制御といえる。

これは、応答の低減に関する評価指標ev2が最大応答変位 のみに依存し、変位が最大にならないときの応答を低減し ても評価値に影響しないためと考えられる。このため、非 制御時の応答が小さい尾鷲波に対しては、制御力を作用さ せる境界値であるvolよりも応答が大きくなる時間が 0.04 秒間、その結果アクチュエータが仕事をする回数が1回の みとなり、制御効果が小さくなったと考えられる。

最適化で得られたパラメータ設定では、最適化波に対し て応答ストロークが 40cmを超えることはなかった。この ため、S_{stop}が 40cm以上の値である限り式(4)による制御力 は作用しておらず、評価値にも影響しないため、本最適化 におけるS_{stop}の最適値は、40cm以上の任意の値といえる。

また、k_d、c_dの最適化の結果から、ストローク応答の最 大値の制限があるにもかかわらず、100galで基準化した地 震動に対しては、AMDシステムの層剛性と層減衰率が大 きいほど効率が高くなるわけではないこともわかった。

[参考文献]

- 谷原康介,谷明勲:構造物の応答速度とアクチュエータのスト ロークに基づく AMD 制御,日本建築学会近畿支部研究報告 集,第 52 号, pp149-152, 2012.6.
- 2) 谷原康介,谷明勲,山辺友一郎:構造物の応答速度とアクチュエ ータのストロークに基づく AMD 制御アルゴリズム,日本建 築学会学術講演梗概集, pp881-882, 2012.9.
- 3) 武田寿一編著:構造物の免振・棒振・制振,技法堂出版, 1988.5.
- 4) 小堀鐸二:制振構造 理論と実際,鹿島出版会,1993.9.
- 5) 平野廣美:続・遺伝的アルゴリズムと遺伝的プログラミング, パーソナルメディア,2006.6.
- *1 神戸大学大学院工学研究科 修士課程
- *2 神戸大学大学院工学研究科 教授・博士(工学)
- *3 神戸大学大学院工学研究科 准教授·博士(工学)