センサネットワークを用いた地震情報収集システムに関する研究

-OSHW を用いたデータ収集・通信に関する基礎的検討-

キーワード:センサネットワーク オープンソースハードウェア 加速度センサ

1. はじめに

地球環境の観点から、建築物の長期使用が求められてい るが、建築構造物はメンテナンスフリーではなく、時間経 過と共に性能は劣化する。このため、建築構造物に対して は、ライフサイクルの各時点で適切に性能を把握し、必要 な改修や改築を行うことが必要となる。また、大地震等に よる大規模災害が発生した場合は、発生直後に迅速に被災 情報を収集して災害対策に反映することも必要となる。こ のような建築情報の収集システムに、建築性能モニタリン グシステム^{[1][2]}があるが、現状では一般の建物には普及し ていない。この原因としては、システムが高価で、得られ る効果が十分に周知されていない事等が考えられる。

近年,種々のオープンソースハードウェア(Open Source Hard Ware:以下 OSHW)が普及し,各種センサも容易に 入手でき,簡単に各種センサを用いた計測システムを容易 に構築することが可能な状況となっている。筆者らも,加 速度センサやひずみセンサ,ジャイロセンサ等を用いた建 築物の構造性能モニタリングに関する研究^{[3]-[5]}を行い,容 易に入手できるセンサも,建築構造性能モニタリングシス テムに適用可能であることを明らかにしている。

本報では、OSHW と加速度センサを用いて、地震発生 直後に各地で観測される揺れの強さや建物の被災の程度 に関する情報を収集し、自治体による迅速な住民の救助活 動、消防活動の初動体制構築に役立つ情報を提供できるシ ステムの構築を目的とする。また、本システムに無線通信 システムを接続し、ローコストなセンサネットワークを構 築し、振動台実験により、構築した地震情報収集システム の適用性の検討もあわせて行う。

2. 地震情報収集システムのシステム構成

2.1 OSHW

本研究では、OSHW として Arduino^[6]を用いる。表 1 に用いた Arduino Uno R2 の基本スペックを示す。プログ ラムミングは、Arduino プログラミング言語と Processing をベースとした Arduino 開発環境を用いて、比較的容易に 行うことができる。また、この OSHW は、アナログとデ ジタルの入力ポートを有しており、各種センサを容易に接 続できるが、本システムでは 10bit の A/D コンバータを用 いてシステム構築を行う。

表1 ワンボードマイコンの基本スペック

CPU	Atmega328(8bit-AVR, Clock16MHz)	
Flash Memory	32kByte	
SRAM	2kbyte	
EEPROM	1Kbyte	
Analog Input	10bit, 6ports	
Digital Input	14ports	

2.2 加速度センサ

ここでは,容易に入手可能な MEMS 型の3 軸加速度セ ンサ^[7]を用いる。表2に,3軸加速度センサの仕様を示す。 なお,センサの出力帯域は0.1µFのコンデンサを用いて約 50Hz としている。

表 2 加速度センサの仕様

検出範囲	感度	誤差	入力電圧
±2g	1000mV/g	±0.1%	5V

2.3 無線通信システム

無線通信システムには種々のものがあるが、ここでは Arduinoに容易に接続できる XBee^[8]を用いる。XBee は、 省電力に優れた ZigBee 規格の無線機器で、非常に使いや すく豊富な機能を持つ無線モジュールである。また、無線 機器として日本国内で利用する認可を得ており、個人でも 容易に導入することができる。XBee の特性を表3に示す。 XBee にも2種類の規格があるが、本研究ではシリーズ2 の XBee を用いる。

表3 XBee の特性

RFデータ	250Vha	シリアルデ	$1200 \mathrm{bps} \sim$
レート	250Kbps	ータレート	1Mbps
室内/アーバ	最大	動作泪座	-40°C∼
ンレンジ	40m	動作価度	+85°C
屋外/見通し	最大	動作洞由	0~.05%
レンジ	120m	動作碰及	0, 0, 93%
送信出力	2mW	電源電圧	2.1~3.6VDC
受信感度	06dDm	光信電法	15m A
(1%PER)	-900BM	还信电弧	45mA
周波数帯域	2.4GHz	受信電流	40mA

 [○]谷 明勲^{*1} 佐々木 宏仁^{*2}
 山邊 友一郎^{*3}

2.4 地震情報収集システム

図1に本研究で試作した地震情報システムを示す。本研 究では、試作システムで3軸の加速度を計測し、ホストコ ンピュータ上で作動する Processing を用いたデータ収集シ ステムを用いてデータ収集を行う。このシステムでは、デ ータの収集、保存、描画、およびデータ収集後の種々の演 算を行う。図2に計測システムのフローを、図3にホスト コンピュータ上の画面表示例をそれぞれ示す。

図1 地震情報収集試作システム

図2 計測システムのフロー

なお,図2中,「Arduino での処理」以外は、全てホスト コンピュータ上のシステムで実行される。

3. 実験概要

3.1 実験システムの概要

本研究では、図4に示す3層供試体を用いて、一軸の振 動台実験を行う。振動台と最上層天板上にそれぞれ試作シ

図4供試体

ステムを設置し、基地局無線モジュールへ収集した加速度 データを送信させた。また、試作システムと同じ場所に、 同じ加速度センサを設置し、有線で精度の良いデータロガ ーでもデータ収集を行い、試作システムでの計測結果と比 較検討を行った。また、供試体の変位をレーザ変位計で計 測し、ホストコンピュータ側で算出される変位応答との比 較も行った。なお、試作システム1は USB 経由で、試作 システム2は XBee 経由でホストコンピュータと通信を行 い、データ収集を行った。

試作システムで用いた Arduino は, Timer 関数を利用し て1ミリ秒単位でサンプリング間隔を設定できる。しかし, 実際は Arduino 内部で加速度データを計測し,基地局まで 送信するためにはある程度の時間を要し,予備的な検討の 結果, X, Y, Z の3軸の加速度を送信するためにはサンプリ ング間隔 40ms が限界であったため,この実験ではサンプ リング間隔を 40ms に設定した。なお,比較を行うデータ ロガーは 10ms でサンプリングを行った。

3.2 加速度計測実験

本研究では、周期 0.4, 0.5, 0.6 秒の 3 種類の Sine 波と, Taft (1952, EW), Hachinohe (1968, NS), El Centro (1940, NS), JMA Kobe (1995, NS)の 4 種類の地震波を入力し、試作シス テムとデータロガーを用いた加速度計測実験を行った。結 果の例として, Taft 波を入力した場合の振動台上,供試体 最上層天板上の絶対加速度波形の比較を図5,6に示す。

試作システムとデータロガーを用いた加速度計測誤差 を以下のように算定した。地震波の場合では、試作システ ムで記録した極大値の内大きなものから順に3つの値と、 極小値の内小さなものから順に3つの値を記録した6つの 時刻(図5,6中の緑丸)における加速度から平均誤差を求め た。誤差の算出式を式(1)に、計測誤差の一覧を表4に示す。

$$\left\{\frac{1}{6}\left(\sum_{i=1}^{3}\frac{y_{\max i}^{T}}{y_{\max i}^{D}}+\sum_{i=1}^{3}\frac{y_{\min j}^{T}}{y_{\min j}^{D}}\right)-1\right\}\times100$$
(1)

ここで、 y_{maxi}^{T} : 試作システムで計測した極大値、 y_{minj}^{T} : データロガーで計測した極大値、 y_{maxi}^{D} : 試作システムで計 測した極小値、 y_{minj}^{D} : データロガーで計測した極小値。

衣 4	祀对加速度计侧0	7平均
	入力波	平均誤差(%)
	Sine波、周期0.4秒	12.15
	Sine波、周期0.5秒	9.96
	Sine波、周期0.6秒	9.49
振動台上	Taft波	21.61
	Hachinohe波	15.25
	El Centro波	23.99
	Kobe波	17.21
	Sine波、周期0.4秒	15.10
3層天板上	Sine波、周期0.5秒	9.48
	Sine波、周期0.6秒	8.20
	Taft波	28.20
	Hachinohe波	17.72
	El Centro波	19.04
	Kobe波	9.78

長4 絶対加速度計測の平均誤差

3.3 変位算出

ー般に、加速度センサで計測された加速度波形を単に積 分しても変位応答波形を得る事はできない。このため、本 研究では、既往の研究⁽⁴⁾で用いられたバターワースフィル タを用いてフィルタリングを行いフーリエ積分により変 位応答を算出した。バターワースフィルタを式(2)に示す。

$$H(\omega) = \sqrt{\frac{1}{1 + \left(\frac{\omega_c}{\omega}\right)^{2N}}}$$
(2)

ここで、 ω_c 、 ω はそれぞれ遮断周波数、周波数を、N は 次数を表している。 ω_c 、N については、事前に検討を行い、 $\omega_c=0.5Hz$ 、N=4と仮定した。Taft EW 波の場合に、振動台 上、供試体 3 層天版上で計測された絶対加速度を積分して 得られた変位波形を図 7、8 に示す。また、誤差の一覧を 表 5 に示す。なお、誤差は式(3)で求めた。

誤差(%) =
$$\frac{(\delta_{\max}^{I} - \delta_{\max}^{L})}{\delta_{\max}^{L}} \times 100$$
 (3)

ここで、 δ_{\max}^{L} は積分で算出した変位最大値、 δ_{\max}^{L} はレー ザ変位計で計測した変位最大値を表している。

式 5(d) 武功百交區 5 开田朳庄			
入力波	レーザ変位計による 変位の最大値(cm)	積分で算出した 変位の最大値(cm)	誤差(%)
Sine波、周期0.4秒	1.30	1.33	2.31
Sine波、周期0.5秒	1.30	1.33	2.31
Sine波、周期0.6秒	1.36	1.36	0.00
Taft波	1.44	1.45	0.69
Hachinohe波	1.25	1.44	15.20
El Centro波	2.04	1.96	-3.92
Kobe波	1.88	1.98	5.32

表 5(a) 振動台変位の算出誤差

表 5(b) 振動台変位の算出誤差

入力波	レーザ変位計による 変位の最大値(cm)	積分で算出した 変位の最大値(cm)	誤差(%)
Sine波、周期0.4秒	1.96	2.08	6.12
Sine波、周期0.5秒	2.56	2.67	4.30
Sine波、周期0.6秒	3.05	3.17	3.93
Taft 波	3.75	3.71	-1.07
Hachinohe波	4.97	4.73	-4.83
El Centro波	2.04	1.92	-5.88
Kobe波	6.71	6.51	-2.98

3.4 計測震度の算出

気象庁が定める計測震度を,文献[9]の方法で算出した。 但し,気象庁の計測震度は計測された加速度3成分のベク トル合成を行った波形を用いて算出されるが,本研究では 一軸の振動台実験であるため,加速度の合成波形を用いず に,一軸で計測された加速度から計測震度を算出するもの とした。また、加速度波形のフィルタ処理も、気象庁の算 出システムで設定されたフィルタではなく、バターワース フィルタを用いている。図6に、データロガー、試作シス テム(フィルタ処理無し)、試作システム(フィルタ処理有 り)で算出した計測震度を示す。

7	力波	データロガー	試作システム	試作システム
~	<i>J</i> 112)	フィルタ処理あり	フィルタ処理なし
	Taft波	5.27	5.43	5.43
に 新ム レ	Hachinohe波	5.19	5.33	5.33
1111-1111111111111111111111111111111111	El Centro波	5.26	5.48	5.48
	Kobe波	5.35	5.39	5.38
	Taft波	5.89	6.08	6.10
3層天板上	Hachinohe波	5.76	5.81	5.84
	El Centro波	5.90	6.00	6.04
	Kobe波	5.98	6.02	6.06

表6 計測震度の算出結果

3.5 地震情報収集システム

試作システムで計測した情報を、メールで送信するシス テムをホストコンピュータ側の計測システムに組み込み 作動確認を行った。メールを送信するために、Processing に JavaMail^[10]を API として導入した。なお、メール送信に は、Gmail アカウントとパスワードが必要となる。

送信した情報は、加速度の最大値、計測震度、変位の最 大値である。ホストコンピュータがインターネットに接続 されていれば、計測終了後即座にこれらの情報を送信する ことができた。図9に、試作システムから送信されたメー ルの閲覧時の画面を示す。

地震発生	
▲ To 自分 .	12:28 (0分前)
最大加速度:206gal 計測震度:5.43 最大変位:1.45cm	

図9 メール受信画面

4. まとめ

本研究では、ローコストで実現可能な OSHW(Arduino), XBee,加速度センサを用いて試作システムを制作し,加速 度応答の計測精度,応答変位や計測震度の算出精度に関す る検証を行った。その結果、以下のことが明らかになった。 1)試作システムで設定可能な最小のサンプリング間隔は

40ms であった。また,試作システムでは,データの読 み飛ばしや欠測など,データ送信に問題はなかった。

2)試作システムの加速度応答の計測は、データロガーで計 測した加速度応答に対して 8~29%の誤差が見られたが、

振幅,位相の差は小さく,ほぼ一致した波形となった。 3)試作システムで計測した加速度応答を,バターワースフ

ィルタによるフィルタ処理後に二階積分をすることで, 位相,振幅共にレーザ変位計の計測結果に近い変位波形 が得られた。但し,バターワースフィルタ遮断周波数や 次数については、さらに検討を行う必要がある。

- 4)試作システムの計測結果から計測震度を算出可能で,算 出結果はデータロガーと試作システムで差は小さく,試 作システムではフィルタリングの効果も小さかった。
- 5)ホストコンピュータがインターネットに接続されてい れば、試作システムの計測終了後即座に最大加速度,計 測震度,最大変位等の情報を,確実に電子メールによっ て送信できることがわかった。

以上より,試作システムのように安価なシステムでも, 十分に地震情報を収集できることが明らかとなった。

[謝辞]

本研究の一部は、日本学術振興財団科学研究費補助金基盤研究 (C):課題番号 23510201,及び課題番号 25420581 の援助の下に行 われた。また、本研究では遠田敦博士(東京理科大学)の設計され た基板を使用して実験を行った。ここに記して感謝致します。

[参考文献]

- [1]草野直幹:計測地震防災のすすめ,建築と社会, Vol.94, No.1090, 構造のページ, p.46, 2013.1.
- [2]倉田成人、鈴木誠、猿渡俊介、森川博之:ユビキタス構造モニ タリングシステムの実建物での実証実験、日本建築学会、 学術 講演梗概集. A-2、 防火、海洋、情報システム技術、pp.495-496、 2008.7.
- [3]村上匡史,谷明勲,山邊友一郎:センサ付きRFIDを用いた建築 物の構造性能モニタリングシステムに関する研究,-加速度セン サの基本性能と性能モニタリングへの適用性の検討その1-日 本建築学第29回情報システム利用技術シンポジウム論文集,報 告, pp.159-162、2006.12.
- [4]宇賀治元樹,谷明勲,山邊友一郎:センサ付きRFIDを用いた建 築構造性能モニタリングシステムに関する研究-計測された加 速度波形の積分による変位算出,日本建築学第32回情報システ ム利用技術シンポジウム論文集,報告,pp.115-118,2009.12.
- [5]LIANG Qi, MATSUZAWA Takahiro, TANI Akinori and YAMABE Yuichiro : Fundamental Tests on Structural Performance Monitoring System of Building Structures Using Gyro Sensor, Proceedings of the 15th World Conference on Earthqauke Engineering, USB Memory, Paper ID:1296, pp.1-6, 2012.9.

[6]Arduino HP: http://www.arduino.cc/ (2013.10.11 閲覧)

- [7]秋月電子通商HP:KXM52 Series Accelerometers and Inclinometers Analog Output (URL: http://akizukidenshi.com/download/KXM-52. pdf). (2013.10.11 閲覧)
- [8] Robert Faludi 著,小林茂 監訳,水原文訳:XBee で作るワイヤ レスセンサネットワーク,オライリー・ジャパン発行,初版第 1刷,2011.12.8.
- [9]気象庁 HP:計測震度の算出方法(URL: http://www.seisvol. kishou.go.jp/eq/kyoshin/kaisetsu/calc_sindo.htm). (2013.10.11 閲覧)
- [10]ORACLE HP: JavaMail (URL: http://www.oracle.com/ technetwork/java/javamail/index.html) (2013.10.11 閲覧)
- *1 神戸大学大学院工学研究科 教授 博士 (工学)
- *2 元神戸大学学部生(現 JR 西日本)
- *3 神戸大学大学院工学研究科 准教授 博士 (工学)