最適化におけるホタルアルゴリズムの解探索能力

○村上 仁宣*1 西田 哲朗*1 塚崎 克也*1 本間 俊雄*2 横須賀 洋平*3

キーワード:無次元化計算パラメータ クラスタリング機能 最小重量設計 局所最適解

1 はじめに

最適化の近似解法として群知能解法(swarm intelligence: SI) に分類されるホタルアルゴリズム(firefly algorithms: FA)¹⁾が注目されている。FA は蛍の発光(求愛)行動を模倣した解探索法であり、探索個体の評価に目的関数値だけでなく、設計変数空間上の個体間距離を利用することで、一試行により大域的最適解と複数の局所最適解が探索可能となる特徴を持つ。最近、構造最適化への適用例が見られるようになってきている^{2),3)}。

FA の計算パラメータは、解収束速度 *a*, 誘引度 *β*, 個体間距離の影響率 *γ* があり、問題に応じた設定が必要で ある。他の発見的手法と同様に設計変数が増加すると解 の収束性に問題が生じる欠点も有する。ここに、計算パ ラメータ *γ* の無次元化及びクラスタリング機能導入によ り、設計変数空間の効率的な解探索例が示されている ⁴⁾. ⁵⁾。さらに、*α* の無次元化で、3 つの計算パラメータ設定 の簡素化ができるようになった⁶⁾。

本報告では、計算パラメータの無次元化とクラスタリ ング機能を導入した FA を関数の最小値・最大値探索問題 と鋼構造骨組の最小重量設計問題に適用し、解探索能力 を精査する。なお、極値性の確認に対しては局所探索を 用いる。

2 ホタルアルゴリズム

本報告で採用する FA の計算手順を目的関数の最小値 探索問題を対象に以下に説明する。

2.1 ホタルアルゴリズム

<u>1)</u>初期探索位置の決定:計算パラメータ $\alpha \in [0,1], \beta = 1.0, \gamma \in [0,\infty]$ を与える。設計変数空間内に初期探索個体 \mathbf{X}_i^1 (*i*=1,...,*N*)をランダムに配置する。なお、*N*は探索個体数 である。

<u>2) 目的関数値算出</u>: 反復回数 *k* 回目の目的関数値 *f*(**X**^{*k*}) を算出する。

3) 評価値計算: クラスタリング手法(K-means 法)を探 索個体に適用し、クラスタ内の無次元化した個体間距離 rijを式(1)より求め、評価値 *I*ijを式(2)により計算する。

$$r_{ij} = \left\| \frac{\mathbf{X}_{i}^{k}}{\|\mathbf{X}_{i}\|} - \frac{\mathbf{X}_{j}^{k}}{\|\mathbf{X}_{j}\|} \right\| = \frac{1}{\sqrt{s}} \sqrt{\sum_{l=1}^{s} \left(\frac{X_{il} - X_{jl}}{X_{\max} - X_{\min}} \right)^{2}}$$
(1)

$$I_{ij} = I_0 e^{-\gamma r_{ij}} \tag{2}$$

$$I_{0} = \begin{cases} 1/f(\mathbf{X}_{j}^{k}) & \text{if } f(\mathbf{X}_{j}^{k}) \ge 0\\ abs(f(\mathbf{X}_{j}^{k})) & otherwise \end{cases}$$
(3)

評価値 *I_{ij}を*比較し、探索個体*i*に対して同一クラスタ内 で最も評価の高い探索個体*j*を決定する。*s*は設計変数の 数、*X*_{max}, *X*_{min}は設計変数空間の上・下限値である。

<u>4)</u> 誘引度計算・移動:式(4)により探索個体 *j* の誘引度 β*i* を算出し、式(5)で探索個体を移動させる。

$$\beta_i = \beta e^{-\gamma r_{ij}^2} \tag{4}$$

$$\mathbf{\theta}_i^{k+1} = \mathbf{X}_i^k + \beta_i (\mathbf{X}_j^k - \mathbf{X}_i^k) + \alpha (X_{\max} - X_{\min})q$$
(5)

ここで、qは[-0.5,0.5]の乱数である。

<u>5) 解の比較</u>: 探索個体 *i* の目的関数値を算出し、 $f(\mathbf{\theta}_{i}^{k+1}) \leq f(\mathbf{X}_{i}^{k})$ ならば $\mathbf{X}_{i}^{k+1} = \mathbf{\theta}_{i}^{k+1}$ 、そうでなければ $\mathbf{X}_{i}^{k+1} = \mathbf{X}_{i}^{k} \geq$ する。

以上2)~5)を指定した回数繰り返し、解を決定する。

2.2 局所探索(山登り法)

FAの解が極値解であることを示すため、獲得解を初期 値とした局所探索(山登り法)を適用する。山登り法を用 いた計算手順は以下に示す通りである。

<u>1) 初期値</u>: FA により得られた解 X_i を初期探索位置 ${}^{0}X_i = X_i$ とし、側面制約を基準に乱数発生範囲 r%を設定する。 2) 近傍解集合作成: 探索位置 $(X_i (t \ge 0) を中心とした r%$ 範囲に標準偏差 σ の正規乱数を用いた近傍解 ${}^{t+1}\theta_{ij} (j = 1,...,M)$ を配置する。ここでは、近傍解集合内の許容解の

$$m_{k+1} = \begin{cases} m_k + 1 & \text{if } M_l \le 0.2M \\ 0 & \text{otherwise} \end{cases}$$

$$r = \begin{cases} 0.8r & \text{if } m_{k+1} \ge 200 \\ r & \text{otherwise} \end{cases}$$
(6-b)

割合に応じ、以下の式で r%を狭める。

ここで、M: 近傍解集合数, Mr: 近傍解集合内の許容解の 数である。

<u>3)</u>目的関数値算出: 反復回数 *t* 回目の目的関数値 *f* ('**X***i*), *f* (*t*⁺¹**θ***ij*)を算出する。

<u>4) 探索点位置移動</u>:近傍解集合内で目的関数値 f (⁺⁺¹**θ**_{ij}) の評価が最も良い近傍個体 j = g を決定する。

<u>5)</u> 探索点位置比較: 近傍個体 g の目的関数値と比較し、 $f({}^{t+1}\mathbf{\theta}_{ig}) \leq f({}^{t}\mathbf{X}_{i})$ のとき ${}^{t+1}\mathbf{X}_{i} = {}^{t+1}\mathbf{\theta}_{ig}$ 、そうでなければ ${}^{t+1}\mathbf{X}_{i}$ = ${}^{t}\mathbf{X}_{i}$ とする。

以上 2)~5)を指定した反復回数もしくは、収束条件を満 たすまで繰返し、極値解を同定する。

表1 各解法の計算パラメータ

FA		PSO		ABC		SGA	
α	-	W _{max}	0.9	Employed bee	100	世代交代率	0.9
β	1.0	W_{min}	0.4	Onlookers	100	交叉率	0.9
γ	0.0	C_1	2.0	Limit	500	遺伝子長	16bit
с	1, 5, 10	C_2	2.0			突然変異率	0.005

3 大域的最適解獲得における解探索能力の評価 3.1 n次元関数の最小値探索問題

n 次元関数の最小値探索問題を用いて、本 FA と他の発 見的手法を比較して解探索能力を調べる。数値比較は群 知能解法であるオリジナル PSO と ABC、単純遺伝的ア ルゴリズム(SGA)とし、次の n 次元関数(Rastrigin 関数) の最小値探索問題を用いる。

$$f_1(x) = \sum_{j=1}^{n} \left\{ x_j^2 - 10\cos(2\pi x_j) + 10 \right\}$$
(7)
(-5.12 \le x_j \le 5.12) j = 1,...,n

n=2の関数は図1aの高さ方向を反転させた形状である。 式(7)は設計変数間に依存性がない多峰性関数で、局所解 の谷が深い特徴を有する。最小値は0である。

各解法の計算パラメータは表1の値を採用する。SGA はトーナメント方式、二点交叉を用いる。解収束速度 α は問題に応じて設定した。全ての解法で個体数 200、反 復回数1000として試行する。FAのクラスタ数 cは1,5, 10の三種とし、c=1の場合の本 FAとオリジナル FA は 計算パラメータの設定値により同等の解探索性能を示す。

3.2 考察

設計変数数 n を変え、50 回試行した近似的大域的最適 解探索の結果を表 2 にまとめた。FA の各試行のエリート 解に対する平均値を上段に、50 試行内の最も良い解を下 段に示した。PSO, ABC, SGA は大域的最適解を求める解 法である。FA は複数の極値解を獲得する解法であり、試 行によっては大域的最適解を捉えない場合がある。従っ て、50 試行中数試行で良い解が得られていることもある が、平均値が高くなってしまう結果となった。

表2より、ABCを除いた他の解法は設計変数数n = 5前後で大域的最適解の追跡が難しくなっていることが判 る。PSO dnが増加した場合、極端に解探索性能が低下 する。本FA dx, n = 2 で他の解法と同等あるいはそれよ り良い評価の解を得る。クラスタリング機能導入は解探 索性能が僅かに低下する。c = 1のエリート解は、高次元 の問題に対しても PSO, SGA と同等あるいはそれより良 い評価の解を得ている。クラスタリング手法を階層的手 法の群平均法で計算した場合と本 FA で採用した Kmeans 法とを比較すると、前者は設計変数数が増加する と後者よりも高い解探索性能を有し、獲得した解は設計 変数空間上に偏りが生じ易い。なお、設計変数間に依存 性がある Rosenblock 関数の場合、PSO と SGA は高次元 の問題になるにつれて極端に解探索性能が低下し、本 FA ではそのような状況にならない。PSO, ABC はアルゴリズムの改良により解探索性能の向上が報告されている⁷⁾。 FA に対しても同様に解探索能力向上の可能性を有する。

4 本 FA とオリジナル FA の比較 4.1 二変数関数の最大値探索問題

本 FA とオリジナル FA を二変数関数の最大値探索問 題に適用し、大域的最適解と複数の局所最適解獲得に対 する解探索能力を比較する。ここでは、対象とする二変 数関数は次の2つとする。

$$f_2(x, y) = -20 - x^2 + 10\cos(2\pi x) - y^2 + 10\cos(2\pi y)$$

(-5.12 \le x, y \le 5.12) (8)

$$f_{3}(x, y) = 2a + (x \sin\sqrt{|x|} + y \sin\sqrt{|y|})$$

$$(a=418.98288, -512 \le x, y \le 512)$$
(9)

Rastrigin 関数式(8)は高さが異なる密な峰を持つ多峰性の解形状であり、Schwefel 関数式(9)は中央部に低い峰を持ち、4 隅にピークを持つ多峰性関数である。ここでは、本 FA とオリジナル FA に各計算パラメータ同一の α = 0.03, β = 1.0, γ = 100 を採用する。個体数 400、反復回数 200 として試行した。クラスタ数は 10 と固定する。

4.2 考察

図 1,2 より、本 FA はクラスタリング機能の導入で設 計変数空間を偏りなく探索していることが判る。また、 側面制約範囲等の異なる関数に対して同一の計算パラメ ータで FA の解探索能力が確保できる。つまり、本 FA は 問題に応じて計算パラメータ α, β, γ の設定の簡素化に繋 がった。特に大域的最適解だけでなく、局所最適解が確 実に捉えられていることに注目したい。

5 鋼構造骨組の最小重量設計

鋼構造骨組の最小重量設計は、大域的最適解の評価値 に近接する異なる局所最適解が多数存在することが知ら れている⁸⁾。しかし、これらの最適解の中には施工性や 経済性に優れないチェッカーボード状の解形態が多く存 在し、大域的最適解が施工性や経済性に優れているとは 限らない。つまり、大域的最適解だけでなく、多くの局 所最適解の獲得による評価が重要となる。ここでは、鋼 構造骨組の最小重量設計に本 FA を適用し、解探索能力 を確認する。

5.1 解析モデル

解析モデルは文献 9) に示す図 3 の 3 層 3 スパン鋼構造 純ラーメンモデル (Model-A) と、図 5 に示す 10 層 L 字型

			0							
n		2	5	10	20	50	75	100	150	200
FA:c=1	avg.	1.14×10 ⁻³	3.01×10^{0}	2.74×10^{1}	1.04×10^{2}	3.16×10^{2}	4.73×10^{2}	6.28×10^{2}	1.10×10^{3}	1.46×10^{3}
	elite	3.87×10 ⁻⁸	1.21×10^{0}	1.21×10^{1}	5.40×10 ¹	2.20×10^{2}	3.92×10 ²	5.41×10^{2}	8.19×10^{2}	1.24×10^{3}
FA:c=5	avg.	6.90×10 ⁻³	5.47×10^{0}	3.55×10 ¹	1.33×10^{2}	5.21×10^{2}	8.91×10 ²	1.30×10^{3}	2.10×10 ³	2.90×10^{3}
	elite	1.35×10 ⁻⁵	1.69×10^{0}	2.18×10^{1}	9.02×10^{1}	4.63×10^{2}	7.86×10^{2}	1.10×10^{3}	1.94×10^{3}	2.70×10^{3}
FA:c=10	avg.	5.48×10 ⁻³	5.49×10^{0}	3.47×10 ¹	1.32×10^{2}	5.23×10 ²	8.90×10 ²	1.33×10 ³	2.13×10 ³	2.96×10 ³
	elite	2.50×10 ⁻⁶	1.36×10^{0}	2.14×10^{1}	1.08×10^{2}	4.46×10^{2}	8.59×10 ²	1.24×10^{3}	1.99×10 ³	2.87×10^{3}
PSC)	7.60×10 ⁻²	5.83×10^{0}	3.74×10 ¹	1.60×10^{2}	6.89×10 ²	1.17×10^{3}	2.68×10^{3}	2.33×10 ⁶	9.88×10^{6}
ABC		0.00×10^{0}	0.00×10^{0}	0.00×10^{0}	1.07×10 ⁻¹⁶	2.64×10^{0}	2.43×101	6.75×101	2.40×10^{2}	5.20×10^{2}
SGA		2.42×10 ⁻⁶	4.28×10 ⁻¹	1.09×10^{1}	5.35×101	2.71×10^{2}	5.30×10 ²	8.03×10 ²	1.45×10 ³	2.16×10 ³

表 2 Rastrigin 関数 (f1) に関する数値結果 (n 次元関数の最小値探索問題)

鋼構造純ラーメンモデル (Model-B) である。図 3,5 に示 すようにそれぞれ鉛直荷重と各層に Ai 分布に従った水 平荷重を与える。Model-A の解形態は図 4 に示す通りで ある⁹⁾。

5.2 定式化

Model-A に対する定式化は文献 9)を参照のこと。 Model-B に対する鋼構造骨組の部材総体積を目的関数と した最小重量設計の単一目的最適化問題は次式で与える。

Find	Α	部材断面積	(10)
to minimize	$f(\mathbf{A}) = \mathbf{L}^{\mathrm{T}} \mathbf{A}$	部材総体積	(11)
subject to	$\varepsilon_i \leq \varepsilon_a$	許容部材端ひずみ	(12)
	$ heta_j \leq heta_a$	許容層間変形角	(13)
	$A_{j+1} \leq A_j$	上下階柱断面積	(14)
	$\mathbf{A}^{\mathrm{L}} \leq \mathbf{A} \leq \mathbf{A}^{\mathrm{U}}$	上下限值	(15)

ここで、 $f(\mathbf{A})$:目的関数, **A**:断面積ベクトル, **L**:部材長ベ クトル, ε_i , ε_a : *i*部材のひずみの最大値・許容値, θ_i , θ_a : *j*層 の層間変形角の最大値・許容値, A_j : *j*層の外・中柱断面積, **A**^U, **A**^L:断面積の上下限値ベクトルである。チェッカー ボード状の解形態を除するため、式(14)を導入し、上層 の柱断面積が下層の柱断面積より小さくなる制約を加え ている。許容最大ひずみ ε_a は 0.0016,許容最大層変形角 θ_a は全層で 1/200 とし、短期一次設計を想定した最適化 を行う。

5.3 諸条件

部材断面積 A、断面二次モーメント I、断面係数 Z の関 係式を以下の式で与える。床スラブの合成梁効果を考慮 して梁の断面二次モーメントは 2 倍とする。

柱:	$I_i = 1.2A_i^2$, $Z_i = 0$	$0.8A_i^{1.5}$	(角形鋼管)	(16)
梁:	$I_i = 4.0A_i^2$, $Z_i = 1$	$.5A_i^{1.5}$	(H型鋼)	(17)
設計変	で数Aiの上下限値	制約を次	式とする。	
柱:	$100 \le A_i \le 1600$	(cm ²)	(Model A)	(18)
梁:	$100 \le A_i \le 400$	(cm ²)	(Model-A)	(19)
柱:	$100 \le A_i \le 1000$	(cm^2)	(Model D)	(20)
梁:	$80 \leq A_i \leq 300$	(cm^2)	(model-D)	(21)

 Rastrigin 関数(f₂)
 b. Schwefel 関数(f₃)

 図 2 本 FA(二変数関数の最大値探索問題)

表	₹3 FA			表 4	山登	り法
Model	А	В		近傍解数	t	200
個体数	200	200		反復回数	t	10000
反復回数	10000	20000		σ		0.3
α	0.01	0.01		, 上	限値	1
β	1.0	1.0		′ 下	限値	0.0001
γ	0~100	100				
С	10	10				
	329 5kN	64.6 k	N/m			
	527.5KI					
	138.8kN	49.6 k	N/m		4.0m	
			_			
	94.3kN	49.6 k	N/m		4.0m	
					6.0m	
	6.4	-m 6.4r	n I	6.4m		
図33層3	3 スパン鎁	構造純	5-	メンモラ	・ ル(M	odel-A)
f=1.569 m 解形態-I (設計解1)	f = 1.6 解形 (設計	506 m ³ 態-II ·解 2)	f= 解 (言	1.633 m ³ 至形態-III 段計解 3)	f= 解	1.602 m ³ 形態-IV 界の解)
	幺 4	文献 9)1	こよ	る解形態		
	368kN 5. 247kN 221kN 221kN 192kN 192				n n n n n n n n n n n n n n n n n n n n	
					/	>

図 5 10 層 L 字型鋼構造純ラーメンモデル (Model-B)

全部材を SN490 級鋼材とし、柱部材には角形鋼管、梁部 材には H 型鋼を用いる。ただし、第二種地盤,地域係数 1.0,標準せん断力係数0.2 とし、部材のヤング係数は 2.05

×10¹¹ N/m²とする。各解法の計算パラメータは表 3,4 の 値を採用する。Model-A の設計変数の数は柱と梁部材の 対称性により 12、Model-B の設計変数の数は 100 となる。

5.4 数值結果

Model-AのFAによる解形態例(Form-A1~-A6)を図6に 示す。これらの形態を初期値とした山登り法の適用によ る極値解の形態(Form-A1'~-A6')を図7に示す。Model-B のFAによる解形態を初期値として、山登り法を適用し た解形態例(Form-B1'~-B6')は図8に示す。図中fは部材 総体積の値である。

5.5 鋼構造骨組の最小重量設計の考察

Model-A に対し、文献 9) で示されている解形態-I~-IV の近傍解を FA により獲得できている(図 4,6)。しかし、 山登り法の適用により、解形態-III のみ同定することが できなかった。解形態-III の解特性については更に調べ る必要があるだろう。Model-B は、本 FA と山登り法の組 合せにより多様な極値解が得られることを示している (図 8)。これらのことから、FA は多様な極値解を確実に 得ることができ、局所最適解が存在する鋼構造骨組の最 小重量設計のような問題に有効な解法であることを示し た。

6 まとめ

本報告は、関数の最適化問題と鋼構造骨組の最小重量 設計問題に計算パラメータの無次元化とクラスタリング 機能を導入した FA を適用することで最適化問題に対す る解探索能力を精査した。

n 次元関数の最小値探索問題の数値結果より、大域的 最適解を獲得する計算パラメータを設定した FA は、設 計変数が少ない場合、他の群知能解法や遺伝的アルゴリ ズムと同等の解探索能力を有することが判った。ただし、 設計変数が増加すると解探索性能が低下する。なお、二 変数関数の最大値探索問題の数値結果より、本 FA を用 いることで、異なる問題に対して同一の計算パラメータ で解探索能力が確保でき、さらに局所最適解を確実に捉 えられることを示した。

FAを鋼構造骨組の最小重量設計に適用し、一回の試行 で大域的最適解と複数の局所最適解の近傍の解を獲得す ることを示した。ただし、FAによる解探索は必ずしも極 値解を得るとは限らないため、局所探索の実施が必要で ある。

以上により、採用した FA を関数の最適化問題と鋼構 造骨組の最小重量設計問題に適用し、解探索能力と極値 解獲得の有効性を明らかにした。今後、FA の解探索能力 の強化に努めたい。

[参考文献]

- Xin-She Yang : Firefly Algorithms for Multimodal Optimization, Proc. 5th Inter-Conf. on Stochastic Algorithms, Foundations and Applications , 169-178,2009
- 2) 田中奈津希,本間俊雄,横須賀洋平:多目的最適化に適用可能なホタルアル ゴリズムによる構造形態創生法、日本建築学会、コロキウム構造形態の解析 と創生、39-44,2014
- 3) 松尾圭介、本間俊雄:ホタルアルゴリズムと局所探索による鋼構造骨組の最 小重量設計、日本建築学会、コロキウム構造形態の解析と創生、95-100,2013
- Natsuki Tanaka, Toshio Honma, Youhei Yokosuka: Structural shape optimization of free-form surface shell and property of solution search using firefly alogorithm, Journal of Mechanical Science and Technology, 1449-1455,2015
 田中奈津希,本間俊雄,横須賀洋平:ホタルアルゴリズムによる連続体シェ
- 5) 田中奈津希,本間俊雄,横須賀洋平:ホタルアルゴリズムによる連続体シェ ル構造の形状最適化と解の安定性,日本機械学会第 11 回最適化シンポジウム、No.1109,2014
- 6) 塚崎克也, 辻孝輔,本間俊雄, 横須賀洋平:無次元化パラメータによるホタ ルアルゴリズムを用いた自由曲面シェル構造の形態創生,日本建築学会九 州支部研究報告,構造系 55,2016
- 字谷明秀,長島淳也、牛膓隆太、山本尚生:Artificial Bee Colony(ABC)アルゴ リズムの高次元問題に対する解探索性能の強化、電子情報通信学会論文誌、 vol.J94-D, no.2, pp.425-438, 2011
- M.Ohsaki: Local and global searches of approximate optimal designs of regular frames, International Journal Methods in Engineering, Vol.67,No.1,132-147,2006
 宋昶、山川蔵、上谷宏二: 鋼構造骨組の最小重量設計問題における凸緩和, 日本建築学会構造系論文集,第77巻,673号,369-377,2012

*1 鹿児島大学大学院理工学研究科建築学専攻 大学院生

^{*2} 鹿児島大学大学院理工学研究科建築学専攻 教授 工博

^{*3} 鹿児島大学大学院理工学研究科建築学専攻 助教 博士 (情報科学)