量子的振る舞いを導入した発見的手法による 鋼構造骨組の最適ブレース配置+最小重量設計

○小田 佳明^{*1} 本間 俊雄^{*2} 横須賀 洋平^{*3}

キーワード:発見的手法 量子的振る舞いスキーム 鋼構造骨組 ブレース最適配置 最小重量

1.はじめに

一般に鋼構造骨組の最小重量設計問題では、大域的最適 解の近傍に評価の高い局所最適解が多数存在することが 知られている。同様に鋼構造骨組に対し、適切なブレース を配置する問題でも多くの最適解が存在し、種々の解法が ある 1)2)。施工性や経済性を考慮したこれらの問題は、条 件を満たす解を得るため、大域的最適解だけでなく局所最 適解の獲得が求められる。従って、評価の高い多数の極値 解を獲得し、適切にそれらの解を評価する必要がある。こ のような極値解の探索手法として発見的手法に分類され る群知能(SI)のホタルアルゴリズム(FA)³⁾が提案されて いる。FA はホタルの発光現象に着想を得た解探索法であ り、大域的最適解だけでなく局所最適解の獲得も可能であ る。FA を適用した鋼構造骨組の部材断面とブレース配置 を同時に最適化する試みも示されている⁴⁾。ただし、SIの 一般的な弱点である設計変数の増加による近似解精度の 低下は、FAにも共通する。

最近、粒子群最適化(PSO)⁵⁾に対して粒子に量子的振る 舞いを取り入れた QPSO (PSO having Quantum behavior)が ベンチマーク問題により近似最適解の探索能力を向上さ せることが示されている⁶⁰。著者らは大域的最適解の獲得 を目的とした SI の人工蜂コロニー(ABC)⁷⁰と FA に、この 量子的振る舞いを導入した QABC, QFA を構築し、ベンチ マーク問題に対してオリジナルアルゴリズムよりも近似 解精度が向上することを示した⁸⁰。

本稿では、QABC, ABC, QFA, FA を鋼構造の最適ブレー ス配置+最小重量問題に適用し、解探索性能を検討する。 その際、QFA, FA では局所解の獲得を確実にするため、ク ラスタリングの操作を導入する。また、効率的な解探索性 能の向上を目的とし、量子的振る舞いの更新候補点を複数 発生させた近傍発生型量子的振る舞いスキームを提示し て QABC, QFA に導入する。なお、近傍発生型 QABC, QFA を QABC(*ne*), QFA(*ne*)と表記(*ne*: 近傍発生数)し、以上 の各解法を用いて近似解を比較する。

2. 最適化手法と量子的振る舞い

2.1 量子的振る舞いスキーム

各探索個体が設計変数空間の特定の探索個体位置 Qb に 収束するモデルとして次式が与えられる⁹⁾。

$$Q = \frac{(\phi_1 Q_i + \phi_2 Q_b)}{(\phi_1 + \phi_2)}$$
(1)

ここで、 φ_1, φ_2 : [0,1]の乱数、 Q_i : 個体iの位置を表す。Qは変数の解更新に伴う探索幅の基準点である。設計変数の 上限値と下限値をそれぞれ X_{max}, X_{min} (側面制約)としたと き以下の無次元化パラメータhを設定する。

$$h = \left| \frac{Q_i - Q}{X \max - X \min} \right| \tag{2}$$

Q周りの設計変数の探索に伴う探索幅Lは次式で与える。

$$L = \begin{cases} \begin{pmatrix} \left(\frac{1}{g}\right) | Q_i - Q | & \text{if } \left(\sqrt{h} \le g\right) \\ \left(\frac{1}{\sqrt{h}}\right) | Q_i - Q | & \text{if } \left(g \le \sqrt{h} \le 0.996\right) \\ \left(\frac{1}{0.996}\right) | Q_i - Q | & \text{otherwise} \end{cases}$$
(3)

ここで、gは $g \ge \ln \sqrt{2}$ を満たし、個体 Q_i の解更新をする上で、より精度の高い解に収束させる調整を行う係数である。

更新個体位置は、基準点 Q から乱数で移動方向を決定し、 探索幅 L を用いて次式で設定する。

$$\mathbf{X}_{i}^{s} = \begin{cases} Q - L(\ln(\frac{1}{u})) & \text{if} \quad i(r \ge 0.5) \\ \\ Q + L(\ln(\frac{1}{u})) & \text{otherwise} \end{cases}$$
(4)

ここで、u, r: [0,1]の乱数、s: 反復回数である。

Qbの選択方法は各オリジナルアルゴリズムの解更新の 手順に応じて決定し、式(4)の適用により各解法に対して 量子的振る舞いの導入が可能となる。

2.2 近傍発生型量子的振る舞いスキーム

式(1)の *Q* 周りの設計変数の探索に伴う探索幅 *L_{ne}*を式 (2)の *h*を用いて次式で与える。

$$L_{ne} = \left(\frac{1}{ran}\right) |Q_i - Q| \tag{5}$$

ここで、*ra*: [0,1]の乱数、*L_{ne}*: 指定された近傍数 *ne* 個分作 成する探索幅である。解を更新させる1個体に対し、以下 の式で解更新候補点を *ne* 個発生させる。

$$\mathbf{X}_{i_{ne}}^{s} = \begin{cases} Q - L_{ne}(\ln(\frac{1}{u})) & \text{if} & i(r \ge 0.5) \\ \\ Q - L_{ne}(\ln(\frac{1}{u})) & \text{otherwise} \end{cases}$$
(6)

 $\mathbf{X}_{i_1}^s, \mathbf{X}_{i_2}^s \cdots \mathbf{X}_{i_{ne}}^s$ で最も評価の高い個体 $\mathbf{X}_{i_{best}}^s$ を次の更新位置とする。なお、ne=1のとき QABC= QABC(1), QFA= QFA(1)を意味する。

Q^b の選択方法は各オリジナルアルゴリズムの解更新の 手順に応じて決定する。以下に各解法の量子的振る舞いス キームを説明する。

2.3 量子的振る舞いを導入した ABC (QABC)

目的関数値の最小化を対象とした計算手順は以下の通 りである。

1) <u>初期食糧源決定</u>: *employed bee* の数だけ探索点 $\mathbf{X}_{i}^{1}(i=1,2,...,n)$ を設計変数空間にランダムに配置する。 *employed bee* を各一匹_{eb} \mathbf{X}_{i}^{1} を割り当てる。目的関数値 $f(\mathbf{X}_{i}^{1})$ を計算する。ここで n は個体数である。

2) <u>employed bee の探索</u>: 食糧源の近傍で新たな食糧源 を探索するために式(4)より位置を_{eb} \mathbf{X}_{iw}^{k} に更新する。 QABC(*ne*)は式(6)を用いて探索個体を移動させる。ただし _{eb} $\mathbf{X}_{iw}^{k} = \mathbf{X}_{i}^{s}, _{eb}\mathbf{X}_{iz}^{k} = \mathbf{X}_{iz}^{k-1}$ である。 Q_{b} は近傍の中で目的関数 を最小とする位置である。ここで*w*はランダムに選択され た一つの設計変数であり、*z*は*w*以外の設計変数である。 目的関数値 $f(_{eb}\mathbf{X}_{i}^{k}) \in \hat{g}$ 出し、 $f(_{eb}\mathbf{X}_{i}^{k}) \leq f(\mathbf{X}_{i}^{k})$ のとき $\mathbf{X}_{i}^{k+1} = _{eb}\mathbf{X}_{i}^{k}$ 、 $f(_{eb}\mathbf{X}_{i}^{k}) > f(\mathbf{X}_{i}^{k})$ のとき $\mathbf{X}_{i}^{k+1} = \mathbf{X}_{i}^{k}$ とする。

3) <u>onlooker bee の探索</u>:新たな食糧源の評価値 fit_i^k を式 (7)、相対価値確率 pl_i^k を式(8)により算出し、ルーレット 選択により食糧源を選択して onlooker bee $_{ob} \mathbf{X}_i^k$ とする。

$$fit_i^k = \begin{cases} \frac{1}{1 + f({}_{eb}\mathbf{X}_i^k)} & \text{if } f({}_{eb}X_i^k) \ge 0\\ 1 + abs(f({}_{eb}\mathbf{X}_i^k)) & \text{otherwise} \end{cases}$$
(7)

$$pl_i^k = \frac{fit_i^k}{\sum\limits_{j=1}^N fit_j^k}$$
(8)

ここで N は食糧源の数である。ルーレット選択後、式(4) を用いて解の比較を行う。

4) <u>最良食糧源の記憶</u>: 最も評価の高い食糧源は最良食 糧源として保存する。 $f(\mathbf{X}_{i}^{k+1}) \leq f(_{best}\mathbf{X}_{i})$ のとき $_{best}\mathbf{X}_{i} = \mathbf{X}_{i}^{k+1}$ とする。ただし初期値は $_{best}\mathbf{X}_{i} = \mathbf{X}_{i}^{k}$ である。

5) <u>scout bee の探索</u>: 食糧源が最初に指定した *limit* 回更 新されなければ食糧源の一つを初期化する。

以上2)~5)の操作を指定した反復回数繰り返す。

2.4 量子的振る舞いを導入した FA(QFA)

目的関数値の最小化を対象とした計算手順は以下の通 りである。クラスタ化は K-平均法を用いる。

1) 初期探索位置決定:パラメータ

 $\alpha \in [0,1], \beta = 1.0, \gamma = [0,\infty]$ を与える。設計変数空間内に探 索個体 $\mathbf{X}_{i}^{l}(i = 1,2,...,n)$ をランダムに配置する。ここで、*n* は個体数である。

 <u>目的関数値算出</u>: 反復回数 k 回目の探索における i 番目の目的関数値 f(X^k_i)を計算する。

3) 評価値計算: K-平均法によるクラスタリングを適用

した後、クラスタ内の無次元化した個体間距離 r_{ij}を式(9) により求め、評価値 I_{ij}を式(10)で計算する。

$$r_{ij} = \left\| \frac{\mathbf{X}_{i}^{k}}{\|\mathbf{X}_{i}\|} - \frac{\mathbf{X}_{j}^{k}}{\|\mathbf{X}_{j}\|} \right\| = \frac{1}{\sqrt{S}} \sqrt{\sum_{l=1}^{S} \left(\frac{X_{il} - X_{jl}}{X_{\max} - X_{\min}} \right)^{2}}$$
(9)

$$I_{ij} = I_0 e^{-\eta_{ij}} \tag{10}$$

$$I_{0} = \begin{cases} \frac{1}{f(\mathbf{X}_{i}^{k})} & \text{if} \quad f(\mathbf{X}_{i}^{k}) \ge 0 \\ \left| f(\mathbf{X}_{i}^{k}) \right| & \text{otherwise} \end{cases}$$
(11)

4) <u>探索個体の移動</u>:式(12)により探索点 j の誘引度を 算出し、式(4)を参考に式(13)を用いて探索個体を移動さ せる。QFA (ne)は式(6)を用いて探索個体を移動させる。 ここで $\theta_i^{k+1} = \mathbf{X}_i^s$ である。

$$\beta_j = \beta e^{-\eta_j^2} \tag{12}$$

$$\theta_i^{k+1} = Q \pm \beta_j (L(\ln(\frac{1}{u}))) \pm \alpha (X_{\max} - X_{\min})\varepsilon$$
(13)

*Q*_bは個体間距離に基づく評価値が最も高い個体を選択し、 乱数 *r* により移動の方向を決定する。

5) 探索位置の比較:目的関数値を比較し、

以上 2)~5)の操作を指定した反復回数繰り返す。

2.5 K-平均法

K-平均法(k-means 法)は以下の通りである。

 <u>初期クラスタ設定</u>: クラスタ数 c を設定する。探索 個体 X, (*i* = 1,2,...,*n*) に対し、ランダムにクラスタ番号

j(*j*=1,2,...,*c*)を割り当てる。

 <u>クラスタ中心間の決定</u>:反復回数 k 回目の同クラス タ内に含まれる個体, X, の中心, V^{*}, を算出する。

3) <u>クラスタの割り当て</u>: 個体_j**X**_i と中心点_j**V**_i^{*}の個体 間距離を計算し、個体_j**X**_i を最も近接する中心点_j**V**_i^{*}のク ラスタに割り当てる。 j(j=1,2,...,c)を割り当てる。

4) <u>終了判定</u>: 個体と中心点 $_{j}\mathbf{V}_{i}^{k} = _{j}\mathbf{V}_{i}^{k-1}$ の時終了する。 そうでなければ 2)~5)を繰り返す。

 $\mathbf{X}_{i}^{k+1} = \mathbf{X}_{i}^{k} \ \varepsilon \ \mathbf{z} \ \mathbf{z}_{\circ}$

以上 2)~5)の操作を指定した反復回数繰り返す。

3. 鋼構造骨組最適ブレース配置+最小重量問題

最適ブレース配置+最小重量問題に QABC(*ne*),
 QFA(*ne*)を適用させ、既往のアルゴリズムとの性能比較を示す。

3.1 解析モデル

解析モデルは図1に示す10層3スパン骨組とする。以降 n層 mスパンを n×mと表記する。設計用荷重の算出法は文献10)を参考にした。1スパンを8mとし、地震力算定の条件を第二種地盤Z=1.0,振動特性係数1.0,標準せん断

カ係数 0.2 とした。各節点に Ai 分布の地震層せん断力から 算定した地震力を与える。柱と梁はそれぞれ (BCR295)□ -550×550×22, (SN400B) H-600×200×12×19 と設定する。

3.2 定式化

鋼構造骨組のブレース部材総体積を目的関数とした最 適ブレース配置+最小重量問題の単一目的最適化の定式 化は次のように与えられる。

A部材断面積(14)
$$f(\mathbf{A}) = \mathbf{L}^T \mathbf{A}$$
部材総体積(15) $-A_i \sigma_i^a \leq q_{j,i} \leq A_i \sigma_i^a$ 許容応力制約(16) $\frac{M_i E_i A_i^2}{l_i^2} \leq q_{j,i}$ 個材座屈制約(17)

$$q_{j,i} = \frac{E_i A_i}{l_i} \mathbf{b}_i^{\mathrm{T}} \mathbf{u}_j \tag{16}$$

 $A_i \ge 0$ 断面制約 (17)

$$(j=1,...,L$$
 $i=1,...,m)$ (18)
 $\theta i \leq \theta a$ 層間変形角 (19)

ここで $f(\mathbf{A})$: 目的関数, **A**: 断面積ベクトル,**L**: 部材長ベク トル, *E*_{*i*}: 部材 iのヤング係数, l_i : 部材 iの部材長, *A*_{*i*}: 部材 iの断面積, σ_i^a : 部材 iの許容応力, M_i : 部材 iの断面形状 に依存した係数, $\mathbf{b}_i^{\mathsf{T}}\mathbf{u}$:ブレース部材 iの伸び, n: 荷重ケー スの数, $\theta_i, \theta_a: i$ 層の層間変形角の最大値・許容値である。

3.3 解析条件

全部材のヤング係数を 2.05×10⁵ N/mm²、ブレースの許容 応力を σ^a = 185 N/mm² とし、許容最大層変形角 θa は全層 で 1/200 とする。Mi の値は円筒断面 (D/t = 40,D: 外径, t: 板 厚)を仮定し、全ブレースに対して Mi = 15.325 で与える。 剛床を考慮して梁の軸方向の剛性を実構造物の 10 倍とす る。設計変数 Ai の上下限値制約は以下の通りとする。

$$10.0 \le A_i \le 99.53 \text{ cm}^2$$
 (20)

荷重ケースは2ケースで、左から右方向、右から左方向 の荷重を個別に作用させる(図.1)。荷重は各接点に分散さ せる。支持条件は固定端で、左右対称構造である。解析は 効率化のため反復回数 k_1 回までは部材断面を固定とした ブレース配置最適化を行い、 k_1 回目以降からブレース断面 とブレース配置の同時最適化を行う。ブレースは各柱,梁 節点の対角に配置する。表 1,2 に ABC, FA のパラメータ示 す。QABC (*ne*), QFA (*ne*)の近傍数は対象とする Model-A に対し、効率的な探索が可能な値5と設定する。各解法 10 試行の中で得られた最適解例を図2 に示し、QFA, FA, QFA (5)による最適解の各ブレース断面積と総体積を表3 に記す。各最適形態の層間変形角図、収束遷移図、獲得形 態の多様度を表す多様度指数のグラフはそれぞれ図3,4,5 に載せる。

4. 数值結果

図3から各解法で得られた解形態はいずれも層間変形角

表 1. ABC	7	表 2. FA パラメータ				
	ABC				FA	
個体数	200	個	個体数	200		
反復回数	5000	反	復回数	5000		
k_{I}	1000		k_1	1000		
employed bee	200		α_l	0.4		
onlooker bee	200		α_2	0.06		
scout bee	360	60 β		1.0		
			γ	10)	
		ク	ラスタ	10)	
1105.4kN				↓1105.4kN		
557.8kN → <	\rightarrow	\leq	\geq	€ 557.8kN	0 400	
469.8kN →	\rightarrow	\leq	\leq	€469.8kN	400	
404.5kN	\geq	\leq	\leq	€404.5kN	400	
348.7kN	\geq	\leq	\leq	<u></u>	4000	
298.0kN	$\geq >$	\leq	\leq	€ 298.0kN	4000	
250.3kN	>>	\leq	\leq	250.3kN	4000	
204.7kN	\ge	\leq	\leq	204.7kN	4000	
160.5kN	\geq	\leq	\leq	€ 160.5kN	4000	
117.3kN	\geq	\leq	\leq	↓117.3kN	400(
	\times	$\langle \rangle$	\times		5000	
777777	7/1/ 7/7/7/7/	777777777	77777	7777		
<u>8000 8000 8000</u> 24000						
-	24					

図 1. 骨組 10×3 (Model-A) (unit: mm)

の制約を満たす。図4の収束遷移のグラフから k_1 回目まで にすべての解法で同数のブレース配置を獲得し、 k_1 回目以 降の最小重量同時最適化では QABC(5)の収束性の優位性 が確認できる。図5に示すように QABC, ABC, QABC(5) で獲得した解形態の多様度は低い。一方で QFA, FA, QFA(5)で獲得した解形態は多様性があり、図2に示すよ うに形態の異なる様々なブレース配置が得られる。ブレー ス部材総体積を比較すると図2から QABC(5), QFA(5)は それぞれ QABC, ABC、QFA, FA より良好な結果が得られ た。

5. まとめ

本稿では量子的振る舞いを持たせた ABC(QABC)と FA(QFA)、オリジナルの ABC, FA, また提示スキームであ る近傍発生型の QABC(*ne*), QFA(*ne*)を鋼構造骨組の最適 ブレース配置+最小重量問題に適用させ解探索能力の比 較を行った。QFA はオリジナルアルゴリズムより優位性を 示した。近傍発生型の QABC(*ne*), QFA(*ne*)はそれぞれ QABC, ABC, QFA, FA より高い精度の解が得られることを 確認した。ただし、近傍発生数を増やすことで計算コスト が増加する。適切な近傍発生数を選択することは効率的で 多様な解探索を行う上で重要である。今後、パラメータに 対する詳細な検証が必要となるであろう。

表 3. 獲得形態のブレース断面積と総体積 (case-A1)

FA OFA OFA(5)部材 断面積(mm2) 断面積(mm²) 断面積(mm²) (1) 9023.8 8789.6 9248.1 (2)9675.0 9068.6 8650.9 3 6599.7 7164.8 8413.4 4 9649.7 6501.7 6940.0 5 7560.0 6744.3 5496.3 6 9946.5 9723.2 5496.4 \bigcirc 7705.5 9282.3 6324.1 (8) 8588.0 8661.3 9766.9 9 9080.4 6797.7 9712.0 10 7011.6 7150.2 7398.6 6306.4 (11) 7165.3 8238.4 1613256 (cm³) Total 1662084 (cm³) 1595371 (cm³)

[参考文献]

 M.Ohsaki : Local and global searches of approximate optimal designs of regular frames, International Journal Methods in Engineering. Vol.67.No.1.132-147.2006

- frames, International Journal Methods in Engineering, Vol.67, No.1,132-147,2006 2) 松尾圭介,本間俊雄:ホタルアルゴリズムと局所探索による鋼構造骨組の最小 重量設計,日本建築学会,コロキウム構造形態の解析と創生,95-100,2013
- Xin-She Yang, Nature-Inspired Metaheuristie Algorithm Second Eddition, Luniver Press, 81-96, 2008
- 4)村上仁宣,本間俊雄,横須賀洋平:ホタルアルゴリズムを用いた鋼構造骨組の 最小重量最適ブレース配置問題,日本建築学会九州支部研究報告,56,245-248, 2017
- J. Kennedy and R C. Eberhart : Particle Swarm Optimization. In: Proc. IEEE Int. Conf. Neural Networks, 1942–1948, 1995
- O J. Sun, B. Feng and W. Xu, : Particle Swarm Optimization with Particles Having Quantum Behavior, Proc. Congress on Evalutionary Computation, 2004
- D.Karaboga and B. Basturk : A powerful and efficient algorithm for numerical function optimization : artificial bee colony (ABC) algorithm, Journal of Glob Optimization 39, 459-471, 2007
- 8) 小田佳明,本間俊雄,横須賀洋平:量子的振る舞いを導入した発見的最適化手 法による解探索性能,日本建築学会九州支部研究報告,56,333-336,2017
- M.Clerc and J.Kennedy, The Particle Swarm: Explosion, Stability and Convergence in a Multi-Dimensional Complex Space. IEEE T. Evolutionary Computation, Vol.6, 58-73, 2002
- 10)田村拓也、大崎純、高木次郎:機械学習と疑似焼きなまし法を用いた鋼構造 骨組のプレース配置の組合せ最適化、第40回情報・システム・利用・技術シ ンポジウム、67-70、2017
- *1 鹿児島大学大学院理工学研究科建築学専攻 大学院生
- *2 鹿児島大学大学院理工学研究科建築学専攻 教授·工博
- *3 鹿児島大学大学院理工学研究科建築学専攻 助教·博士(情報科学)