ユーザーズガイド

温熱環境評価のための 65 分割体温調節モデル 65-Node Thermoregulation-Model for Evaluation of Thermal Environment

65MN

Ver. 1.0

2001/03/09

早稲田大学理工学部建築学科 田辺新一研究室

はじめに

このユーザーズガイドで説明する 65MNは、温熱環境評価用のツールとして早稲田大学 理工学部建築学科田辺新一研究室で開発されたコンピュータ・ソフトウェアです。65MN により、これまでの手法では困難であった不均一かつ非定常状態にある温熱環境の評価が 可能です。

65MNは、インターネット上に公開しています。下記 web サイトにてダウンロードして ご使用ください。ソースコードは非公開ですが、計算方法は Appendix に示す学術論文とし て公開しています。

http://www.tanabe.arch.waseda.ac.jp/model/

65MNの開発に関して、関係者各位に多大なご協力を賜りました。深く感謝いたします。

早稲田大学理工学部建築学科

田辺 新一 小林 弘造

2001年3月9日

ご注意

・65MN およびユーザーズガイドの著作権は、早稲田大学理工学部建築学科田辺新一研究室 に帰属します。

・65MN とユーザーズガイドの一部または全部を許可なくコピーすることはできません。また、65MN とユーザーズガイドのバージョンアップは逐次行い、予告なく内容を変更する場合があります。web サイトでは、その時点での最新版をダウンロード可能とします。したがって、ユーザーには直接上記 web サイトにてダウンロードしていただくことを原則とし、第三者へコピーの上譲渡することはできません。

・本ソフトウェアを使用することにより生じた一切の責任は、ユーザー自身が負うものとします。また、65MN とユーザーズガイドに関する個別の質問に関しては、必ずしも全てにはお答えできません。あらかじめご了承ください。

・Microsoft、Windows、Visual Basic は Microsoft Corporation の登録商標です。その他、記載されている会社名、製品名は、各社の商標および登録商標です。

Table of Contents

1	セットアップ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
2	クイックスタート ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
3	65MN 概要 ······	5
4	入力データファイルの準備 4-1 Data ファイル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8 9 10
5	計算実行 5-1 "Data Files " ボタンで始める計算実行(個別入力) 5-2 "AutoInput " ボタンで始める計算実行(一括入力)	11 11 14
6	計算結果の出力 6-1 WB 出力ファイル 6-2 SK 出力ファイル 6-3 H 出力ファイル 6-4 I 出力ファイル 6-5 Data 出力ファイル	15 16 17 17 17 17
7	計算例 7-1 作用温度のステップチェンジ 7-2 自動車室内のクールダウンのシミュレーション	18 18 19
A	ppendix 学術論文・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	21

1 セットアップ

本ソフトウェア(以下では 65MN と表記します。)は、Windows 98, Windows Me, Windows 2000のOSがインストールされたコンピュータ上で動作します。なお、65MNは Microsoft Visual Basic 6.0を用いて作成されました。

御使用にあたりコンピュータへの 65MN のインストールは必要ありません。コンピュ ータのハードディスクドライブに、パッケージフォルダ(フォルダ名: "65MN010303v1.0』) をコピーしてご使用ください。パッケージフォルダには、下記の1つのファイルと、2 つ のフォルダが格納されています。動作中には、ファイルの階層をフルパスで表示する箇所 がございますので、ハードディスクドライブ上の浅い階層にパッケージフォルダを配置す ることを推奨いたします。

65MN 実行ファイル (『010303K7.exe』) 各部位の境界条件を記述したファイルを含むフォルダ (『Data』) シミュレーションのシナリオ構成を記述したファイルを含むフォルダ (『AutoInputText』)

パッケージフォルダ内の、『010303K7.exe』ファイルをダブルクリックすると 65MN が 起動します。下記のような画面が立ち上がります。次項のとおり計算例を実行してみてく ださい。

🖌 tak & Eak			×
[C]	tsk.	Esk DW/m	1 ²]
36		100	
34		80	
33		60	
32		40	
31		20	
30		0	
U	time	[min.]	
Skin Temperature Distribution	🔣 🥂 Phase Data		×
Phase 0 00:00:	00 Phase Data File		
	Numbers of Phase	Time Step for Output 60 sec.	<u> </u>
	Data for Phase	Ramp environmental conditions to the next phase	
	Phase Name		
	Duration	(minutes)	
	Metabolic Rate	(W/m)	
	Gio Duta File	Drowse	-
	MRT	Browse Browse	
	Air Velocity Relative Humidity	Browse	
			-
	Speed 1	Data Files AutoInput Calculate End	

2 クイックスタート

詳しい使用法説明の前に、計算例を実行してみます。『AutoInputText』フォルダ内の AutoInputText ファイルを用いて計算条件を一括して簡単に与えることができます。

<u>手順</u> "AutoInput"ボタンをクリックします。図のような「ファイルを開く」ダイアロ グボックスが開きます。

<u>手順</u>パッケージフォルダ内にある、『AutoInputText』フォルダの中から、『t22.txt』を選 択します。計算条件が入力されます。

<u>手順</u> "Calculate"ボタンをクリックします。図のように計算結果が表示されます。

<u>手順</u> "End"ボタンで終了します。

3 65MN 概要

65MN は、自動車室内、パーソナル空調空間、半屋外空間などの不均一かつ非定常状態にある温熱環境が生じ易い空間の評価を目的として開発されました。PMV や SET*といった従来の温熱環境評価指標では、このような温熱環境の評価は困難でした。

65MN は、図のように 16 部位に分割された数値人体熱モデルによるシミュレーション プログラムです。各部位は 4 つの層(コア層、筋肉層、脂肪層、皮膚層)から成っていま す。さらに中央血液溜まりという心臓あるいは動脈系に相当するものが与えられます。人 体を 65 個(16×4+1=65)の熱容量質点でモデル化していることから、65MN(Multi Nodes) と名付けました。65MNの詳細については、Appendix を参照してください。

65MNの入力条件を下記に示します。

曝露時間 [min.]		
着衣量 [clo]	:	16 部位
代謝量 [W/m²]	:	全身
空気温度 []	:	16 部位
平均放射温度 []	:	16 部位
相対気流速度 [m/s]	:	16 部位
相対湿度 [%rh]	:	16 部位

出力される主な計算結果を下記に示します。

各部位の皮膚温や皮膚からの蒸発熱損失量等の生理量予測値 65MNSET*と呼ばれる体感温度等の心理量予測値

65MN のユーザーインターフェイスは、3 つのウィンドウから構成されています。上部 の"tsk & Esk"ウィンドウと、下部左側の"Skin Temperature Distribution"ウィンドウは、 計算結果を表示するためのものです。ユーザーは、下部右側の"Phase Data"ウィンドウの ボタン操作等によってソフトウェアを動作させます。

" tsk & Esk " ウィンドウ					
Ref. 21 Ed. (C) 31 32 33 34 34 35 35 35 35 35 35 35 35 35 35		- 64 Bardy 18			
Norm 0 001: 001: 00	Please Date File	tion of the later			
	Paul Sea Backs Bac	Procession and the same base of the same stress of the same stres			
11	Sec. 1	- Data Pres Autompat Concerner Brid			

" Skin Temperature Distribution " ウィンドウ "Phase Data " ウィンドウ

次に"Phase Data"ウィンドウについて説明します。全ての入力作業と計算の実行および終了を、このウィンドウによって行います。ボタンおよびテキストボックス等の役割を順に示します。

🎯 Phase Data		<u>- 🗆 ×</u>
Phase Data File	C:¥WINDOWS ROFILES¥KOZO¥デスクトッフឺ¥65MN010124	X¥! Auto
Numbers of Phase	2 Time Step for Output 6	0 sec.
Data for Phase	2 Ramp environmental conditions to the ne	xt phase
Phase Name	jikken	
Duration	120 (minutes)	
Metabolic Rate	58.2 (W/m)	
Clo Data File	. nude.clo	Browse
Air Temperature	22. 22.txt	Browse
MRT	22. 22.txt	Browse
Air Velocity	.15 015.txt	Browse
Relative Humidity	50 50.txt	Browse
Speed 1	Data Files AutoInput Calculate	End

シミュレーションの実行後に、入力した計算条件を確認するためのファイル(Data 出力ファイル)の階層をフルパスで表示します。このファイルは、『「シミュレー ション名」+"Data.txt"』という名称になっています。

シミュレーションのシナリオを構成する時間的区切りの数を表示あるいは入力します。この時間的区切りのことを Phase と呼びます。

計算条件を表示あるいは入力する Phase を選択します。図では、第2 Phase が選択 されており、 ~ の計算条件は第2 Phase のものです。

このチェックボックスを選択状態にすると、空気温度・平均放射温度・相対気流速度・相対湿度の4つの境界条件について、入力した値と次のPhaseの入力値とを直線で結ぶように時間変化させて計算を行います。

Phase の名称を表示あるいは入力します。

Phase の曝露時間を表示あるいは入力します。

代謝量を表示あるいは入力します。

着衣量の Data ファイルによって入力した着衣量を表示します。この値は各部位の

値の面積重み付け平均値です。

入力した着衣量の Data ファイルの階層をフルパスで表示します。

着衣量の Data ファイルを選択するためのボタンです。 クリックすると、「ファイル を開く」 ダイアログボックスが開きます。

注) ~ については、その下の、空気温度・平均放射温度・相対気流速度・ 相対湿度の4つの計算条件についても同様です。

計算結果を出力するファイル名およびシミュレーション名を指定するためのボタ ンです。クリックすると「名前をつけて保存」ダイアログボックスが開きます。例 えば、" aaa " という名称を指定すると下記のファイルが生成されます。

[®]aaaWB.csv [®]aaaSK.csv [®]aaaH.csv [®]aaaI.csv [®]aaaData.txt [®]

『AutoInputText』フォルダ内の AutoInputText ファイルを用いて計算条件を一括し て簡単に与えるためのボタンです。「ファイルを開く」ダイアログボックスが開き ます。

シミュレーションを実行するためのボタンです。

65MN を終了するためのボタンです。

計算の出力時間間隔を表示あるいは変更します。デフォルトは 60sec.となっています。

"tsk & Esk" ウィンドウと"Skin Temperature Distribution" ウィンドウにおける計算 結果の表示速度を、表示あるいは変更します。

4 入力データファイルの準備

計算条件の入力方法には2通りあります。ひとつは、"Data Files"ボタンでシミュレーション名を指定した後、"Phase Data"ウィンドウに用意されているテキストボックスやボタン等を用いて、各 Phase の各計算条件を設定していく方法です。もうひとつは、そのすべての操作を"AutoInput"ボタンで行うものです。これは"2 クイックスタート"で実践してみました。

入力方法 1 - " Data Files " ボタンで始める個別入力 入力方法 2 - " AutoInput " ボタンで行う一括入力

これらの計算条件入力では、下記の2種類のファイルが用いられます。ユーザーはシ ミュレーションを行いたい計算条件に関して、これらのファイルを作成する必要がありま す。パッケージフォルダ内のこれらのファイル構成を図に示します。

各部位の境界条件を記述したファイル = Data ファイル 4-1 シミュレーションのシナリオを記述したファイル = AutoInputText ファイル 4-2 AutoInputText ファイル 🧰 65MN010303 📄 AutoInputText 🗒 CoolDown.txt 🗟 Data "≝] OnePhase.txt 🗐 ! AutoData.txt 🗋 🗒 Stolwijk.txt 🐴)! AutoH.csv |≝| t22.txt AutoIcsv | ・計算結果ファイル E t25.txt 🐴!AutoSK.csv パッケージフォルダが配布 🖏ີ]!AutoWB.csv された時点では、これらの 🗒 t31.txt ファイルは含まれていませ 💙 010303K7.exe 🗐 t34.txt ん。" AutoInput " ボタンに 65MN 実行ファイル よる計算条件入力の過程で 生成されます。 Data ファイル "≝]!ForInput.txt 入力方法 2 では、AutoInputText 🗐 01.txt ファイルおよび Data ファイル共 🗐 015.txt に、対応するフォルダ内に格納す 🗐 025.txt る必要があります。 🗒 03.txt 入力方法 1 では Data ファイル 🗐 04.txt のみを作成することになります。 🗐 06.txt ファイルの階層は自由ですが、 🗐 07.txt 『Data』フォルダ内に格納するこ とを推奨します。

4-1 Data ファイル

『Data』フォルダ内の『22.txt』をテキストエディタ(Microsoft メモ帳など)で開く と左図のようになっています。Head 部位から Right foot 部位までの 16 部位について、22 という値が与えられています。この Data ファイルを、空気温度あるいは平均放射温度に用 いれば「22 」を、相対気流速度に用いれば「22m/s」を、相対湿度に用いれば「22%rh」 を表すことになります。ユーザーはこの Data ファイルを作成あるいは書き換えることによ って、空気温度・平均放射温度・相対気流速度・相対湿度について、境界条件を設定しま す。値が入っていないファイルが、『Data』フォルダ内の『!ForInput.txt』として用意してあ ります。

22 Tab が入って { Head } 22 Itest } { Back } 22 Itest , { Pelvis } 22 Itest , { Right shoulder } 22 { Right arm } { Left hand } 22 { Right hand } { Left leg } 22 { Right hand } { Left leg } 22 { Right leg } { Left foot } 22 { Right foot } { Right foot }	22.txt - メモ帳 フ= (川(Γ) (同性(Γ)) 拾書	
	22 Tab が入って 日 22 Tab が入って 日 22 います。 日 22 1ます。 日 22 日 日	lead } heat } hest } hest } hest } hest } heft shoulder } heft arm } heft hand } heft thigh } heft leg } hight leg } heft foot } hight foot }
	4	

Sweat.clo - メモリ ファイル(E) 編集(E)	【 検索(S) ヘルプ(<u>H</u>)	<u>- 0 ×</u>
1.00 1.31Tab が入っ 1.27 1.33 1.18 1.23 1.18 1.23 1.19 1.16 1.05 1.00 1.16 1.05 1.00 1.16 1.12 1.18 1.14 1.07 1.06 0.00 1.04 0.88 1.10 0.59 0.77 0.62 0.53 0.16 0.00 0.54 0.41 0.60 0.48 0.25 0.21	<pre> { Head } { Chest } { Back } { Pelvis } { Left shoulder] { Right shoulder } { Left nam } { Right nam } { Left hand } { Left thigh } { Left leg } { Right foot } { Left shoulder } { Left shoulder } { Left shoulder } { Left shoulder } { Left nam } { Right foot } { Right shoulder] { Right foot } { Left shoulder] { Right shoulder] { Right arm } { Left shoulder] { Right arm } { Left arm } { Right nam } { Left hand } { Right arm } { Right arm } { Left hand } { Right hand } { Left thigh } { Right leg } { Left nam } { Right nam } { Left hand } { Left thigh } { Right nam } { Left thigh } { Right leg } { Left leg } { Right leg } { Left nam } { Right nam }</pre>	}
كار		

着衣量については、別の書式の Data ファイルを用意します。『Data』フォルダ内の 『sweat.clo』をテキストエディタで開くと右図のようになっています。16 部位について、 着衣面積比[-]が順に記され、つぎに着衣量[clo]が順に記されています。これらの値は、サ ーマルマネキン実験による測定値です。着衣量に関しては、『Data』フォルダ内に用意され ている Data ファイルのいずれかを選択してご使用になることを推奨します。 4-2 AutoInputText ファイル

『AutoInputText』フォルダ内の『t22.txt』をテキストエディタで開くと図のようになっています。ユーザーは、この AutoInputText ファイルを作成あるいは書き換えることによって、行おうとするシミュレーションのシナリオ構成(各 Phase の各境界条件の組み合わせ)を設定します。

第1行目にシミュレーションのシナリオを構成する Phase 数が記されています。1行の 空白行の後に Phase 番号があります。次行のランプチェンジ設定は、"0"がステップチェ ンジ、"1"がランプチェンジを示します。「zensitu」とある欄には Phase 名を自由につける ことができます。次行からその Phase の曝露時間と、温熱環境 6 要素(代謝量・着衣量・ 空気温度・平均放射温度・相対気流速度・相対湿度)が順に記されています。

<mark>/</mark> 122.txt ファイル(<u>F</u>)	- メモ帳 編集(E)	検索(<u>S</u>)	<u>-</u> ヘルプ(H)	
2 77-11/(E) 2 Tab 1 0 zensitu 60 45.3 nude.clo 285.txt 285.txt 025.txt 50.txt 2 0 i ikken	- Xモ帳 編集(E) : 空白17ェン : (min : (W/m Data: 空白17ェン : (M/m	<u>検索(S)</u> イズ数 イズチェン リンチェン (tes) クァイル名 (たま) オブチェン 格納必要。 イズチェン	<u>-</u> ヘルプ(田) ハジ=1 ハジ=1	
120 45.3 nude.clo 22.txt 22 txt	:(min :(W/m	utes) 1²)		
015.txt 50.txt				*

5 計算実行

2 つの計算条件入力方法を用いた計算実行の手順を説明します。入力方法 1 ("Data Files"ボタンで始める個別入力)による計算実行を 5-1 で、入力方法 2 ("AutoInput"ボタンで行う一括入力)による計算実行を 5-2 で実践します。

5-1 "Data Files"ボタンで始める計算実行(個別入力)

例題は、28.5 に 60 分間曝露後、22 にステップチェンジして 120 分間曝露を行うシ ミュレーションです。"2 クイックスタート"と同じシミュレーションです。

<u>手順</u> 『0100303K7.exe』ファイルをダブルクリックして 65MN を起動します。"Data Files"ボタンをクリックします。「名前を付けて保存」ダイアログボックスが開きます。計 算結果を出力するファイル名およびシミュレーション名を指定します。"aaa"という名称 をつけてみます。その際『aaaWB.csv』『aaaSK.csv』『aaaH.csv』『aaaI.csv』というファイル が生成されます。生成するファイルの階層は自由ですが、ここではパッケージフォルダ内 を指定しましょう。また、計算終了後『aaaData.txt』というファイルが生成されます。右図 のように『aaaData.txt』ファイルの階層がフルパスで表示されます。

C Phase Data		Phase Data	
Phase Data File		Phase Data File	P-RISHMITET24FaseDete.txt
Numbers of Phase	Time Step for Owtpet 100 240.	Numbers of Phase	Time Step Re Output (0) ces.
Date for Phase	Finance and the set place	Date for Phase	Ramp contracted conditions to the cost phase
Phase Name		Phase Hame	
Duratice	Gainester()	Duration	(minute c)
Metabolic Rate	OW/40	Metabolic Rate	Chr/HD
Cito Data File	Econor.	Gio Data File	Down.
Air Temperature	- Presser	Air Temperature	Dove-
Air Velocity	Birese	Air Velocity	Desve
Relative Hamidity		Relative Humbling	Dowe
50000 [1	Data Files AutoInput Calculate End	30000 [1	y Data Files AutoInput Calculate End

<u>手順</u> 図のように Phase 数として"2"を記入します。するとすぐ下のボックスに Phase 番号がリストアップ表示されます。境界条件の入力の前に、この Phase 番号をクリックし て選択します。"1"を選択します。この Phase 番号の選択を正しく行わないと境界条件入 力ができませんので注意してください。

inchers of Phase	Time Oten for Detect	
		90 Sec.
Doin for Phase	2 Ramp environmental conditions to the ne	ext phase
Phase Name	「クリックして選択	
Duration	(minutez)	
Metabolic Rate	(w/m)	
Metabolic Rute Clio Data File	(w/m)	Browse
Metabolic Rate Clo Data File Air Temperature	(w/#)	Browse
Metabolic Rate Clo Data File Air Temperature MRT	CW/#)	Browse Browse Browse
Metabolic Rate Clo Data File Air Temperature MRT Air Velocity Deletier Hemidte	CW/#)	Browse Browse Browse Browse

<u>手順</u> Phase 名 "FirstPhase "、曝露時間 "60 " min.、代謝量 "45.3 " W/m²を記入します。

😗 Phase Data		
Phase Data File	F:#65MN010124¥aaaData.txt	
Numbers of Phase	2 Time Step for Output	586.
Data for Phase	Ramp environmental conditions to the next	phase
Phase Name	FirstPhase 記入	
Duration	(60 (minutes)	
Metabolic Rate	(45.3 (W/4))	
Clo Deta File		irowse
Air Temperature		Irowse
MRT		rowse
Air Velocity		Rowse
Relative Humidity		rowse
Speed 1	Data Files AutoInput Calculate	End

<u>手順</u> 着衣量の Data ファイルを選択します。ボタンをクリックすると「ファイルを開く」 ダイアログボックスが開きます。"Data"フォルダ内の"nude.clo"ファイルを選択します。 左側に各部位着衣量の面積重み付け平均値と、"nude.clo"ファイルの階層のフルパスが表示されます。

Contract Data		with the second s
Thase Data		-
Phase Data File	F#65MN010124¥aaaData.txt	
Numbers of Phase	Time Step for Output 00 sec.	
Dute for Phase	2 Ramp environmental conditions to the next phase	
Phase Nome	FirstPhase	
Duration	(60 (minutez)	
Metabolic Rate	45.3 (W/H)	•
Cio Deta File	F#65MN010124#Data¥nude.clo	
Air Temperature	Browse	◆ クリック
MRT	States -	
Air Velocity	Browse	
Relative Humidity	Browse	
Speed 1	Data Files AutoInput Calculate End	

<u>手順</u> 手順 と同様にして、空気温度・平均放射温度・相対気流速度・相対湿度の4つの境界条件を与えます。空気温度・平均放射温度には"285.txt"ファイル、相対気流速度には"025.txt"ファイル、相対湿度には"50.txt"ファイルを選択します。

😗 Phase Data	
Phace Data File	F#65MN010124¥aaaData.txt
Numbers of Phase	Time Step for Dutput 100 sec.
Dute for Phase	2 Ramp environmental conditions to the next phase
Phase Nome	FirstPhase
Duration	60 (minutez)
Metabolic Rate	45.3 (W/wl)
Cio Deta File	F.¥65MN010124¥Data¥nude.clo
Air Temperature	20.5 F:¥65MN010124¥Data¥205.txt Browse
MRT	28.5 F.¥65MN010124¥Data¥285.txt Browse
Air Velocity	25 F.W65MN010124VDataV025.txt Browse
Relative Humidity	50 F#65MN010124#Data¥50.txt [Browne]
Speed 1	Data Files AutoInput Calculate End

<u>手順</u> 次に第 2 Phase の計算条件を入力します。図のように Phase 番号 " 2 " をクリック して選択します。第2 Phase の計算条件は未入力なので、各テキストボックスが空白欄とな ります。

Phace Data File	F:#65MN010124#aaaData.txt	
Numbers of Phase	Time Step for Output	0 sec.
Data for Phase	📕 Ramp environmental conditions to the ne	nt phuse
Phase Name	▲■◆クリックして選択	_
Duration	(minutez)	
Metabolic Rate	Cie /wo	
Clo Deta File		Browse
Air Temperature		Browse
Air Temperature MRT		Browse Browse
Air Temperature MRT Air Velocity		Browse Browse Browse

<u>手順</u> 手順 ~ と同様にして、第2 Phase の計算条件を以下のとおり設定します。

Phase 名	:	" SecondPhase
曝露時間	:	" 120 " min.
代謝量	:	" 45.3 " W/m ²
着衣量 Data ファイル	:	" nude.clo "
空気温度 Data ファイル	:	" 22.txt "
平均放射温度 Data ファイル	:	" 22.txt "
相対気流速度 Data ファイル	:	" 015.txt "
相対湿度 Data ファイル	:	" 50.txt "

Phase Data Phase Data File		
Numbers of Phase	2 Time Step for Output 60	sec.
Data for Phase	2 Ramp environmental conditions to the next p	phase
Phase Name	SecondPhase	
Duration	120 (minutes)	
Metabolic Rate	45.3 (W/mi)	
Clo Data File	F:¥65MN010124¥Data¥nude.clo	owse
Air Temperature	22. F:¥65MN010124¥Data¥22.txt Br	owse
MRT	22. F:¥65MN010124¥Data¥22.txt Br	owse
Air Velocity	.15 F:¥65MN010124¥Data¥015.txt Br	owse
Relative Humidity	50 F:¥65MN010124¥Data¥50.txt	0.0058)
Speed 1	Data Files AutoInput Calculate E	nd

<u>手順</u> "Calculate " ボタンで計算を実行します。"End " ボタンで終了します。

5-2 "AutoInput"ボタンで始める計算実行(一括入力)

基本的な操作は、"2 クイックスタート"で行いました。ここでは、AutoInputTextファイルを書き換えて、新たなシナリオのシミュレーションを行います。

<u>手順</u> 『AutoInputText』フォルダ内の『t22.txt』をテキストエディタで開きます。左図の 白黒反転している部分を第 2 Phase の計算条件の下に、空白行を 1 行とってコピー&ペース トします。右図に示す Phase 数の変更と、Phase 番号の変更は必ず行ってください。今回は これに加えて、代謝量を"58.2"W/m²に変更してみます。

<u>手順</u> AutoInputText ファイルには、ユーザーが分かりやすい名称を自由につけてください。ここでは、変更したファイルに"t22_2.txt"と名前をつけて『AutoInputText』フォルダ内に保存します。"2 クイックスタート"と同様にして、AutoInput ボタンを用いて、『AutoInputText』フォルダ内の『t22_2.txt』を選択します。"Calculate"ボタンで計算を実行し、"End"ボタンで終了します。

6 計算結果の出力

計算実行した結果、生成される 5 つのファイルについて説明します。計算結果項目の 意味の説明も含みます。"AutoInput "ボタンによる計算実行でパッケージフォルダ内に生成 された各ファイルを例にして、出力ファイルの呼称を示します。

^𝕫 !AutoWB.csv ₂	= WB 出力ファイル	6-1
^𝕫 !AutoSK.csv ₂	= SK 出力ファイル	6-2
^𝔽 !AutoH.csv ₂	=H 出力ファイル	6-3
^𝕫 !AutoI.csv ₂	= I 出力ファイル	6-4
^𝕫 !AutoData.txt ₂	= Data 出力ファイル	6-5

Data 出力ファイルは txt ファイルですので、テキストエディタ等で開きます。その他の出力ファイルは CSV (Comma Separated Value)形式のテキストファイルです。CSV 形式のテキストファイルとは、数値やテキストなどをコンマで区切って記したテキストファイルで、表計算アプリケーション (Microsoft Excel など)で開くことができます。

6-1 WB 出力ファイル

3**	vec.8Wote													
	A	B	С	D	E	F	G	н	1	J	К	L	M	
1	time	TAwg	TRavg	AVavg	RHavg	tsk	w	Esk.	Emax	Mahive	00	SBF	MBF	En
2	1	28.5	28.5	0.25	50	33.84536	0.06	13.62886	227.1477	2.93E-02	4.557457	0.222242	0.574898	
3	2	28.5	28.5	0.25	50	33,7924	0.06	13.56057	226.0005	0.161143	4.546691	0.207933	0.578442	3
4	3	28.5	28.5	0.25	50	33,73678	0.06	13.49075	224,8458	0.352842	4.540049	0.19614	0.583592	3
5	- 4	28.5	28.5	0.25	50	33.67868	0.05	13,41861	223.6435	0.59625	4.536393	0.185944	0.590132	3
6	5	28.5	28.5	0.25	50	33.62513	0.05	13.35254	222.5424	0.849658	4.535123	0.177865	0.596941	3
7	6	28.5	28.5	0.25	50	33,57457	0.05	13:29042	221.5071	1.110985	4.535383	0.171104	0.603962	3
8	7	28.5	28.5	0.25	50	33.52B21	0.05	13.23357	220.5595	1.357944	4.536671	0.165489	0.610856	3
9	8	28.5	28.5	0.25	50	33.4831.4	0.05	13.17839	219.6398	1.644021	4.539077	0.160477	0.618283	з.
10.0	 M. Martaliff 	/												ALC: N

65MNのメイン出力ファイルです。各列の出力項目の経時変化が各行に出力されます。 出力項目は、ユーザーが与えた境界条件、全身に関する生理量予測値および心理量予測値 等です。各出力項目について下記に示します。

1)	time	経過時間[min.]
2)	TAavg	空気温度(各部位の面積重み付け平均値)[]
3)	TRavg	平均放射温度(同上)[]
4)	AVavg	相対気流速度(同上)[m/s]
5)	RHavg	相対湿度(同上)[%rh]
6)	tsk	平均皮膚温(同上)[]
7)	W	ぬれ率[-]
8)	Esk	皮膚からの蒸発熱損失量[W/m ²]
9)	Emax	最大蒸発熱損失量[W/m²]
10)	Mshive	ふるえ熱産生量[W/㎡]
11)	CO	心拍出量[L/min.]
12)	SBF	皮膚血流量[L/min.]
13)	MBF	筋肉血流量[L/min.]
14)	Eres	呼吸による潜熱損失量[W/㎡]
15)	Cres	呼吸による顕熱損失量[W/m ²]
16)	Qdry	皮膚からの顕熱損失量[W/㎡]
17)	Qsk	皮膚からの顕熱および潜熱損失量[W/㎡]
18)	Μ	熱産生量[W/m ²]
19)	sto	蓄熱量[W/㎡]
20)	65MNET	65MN による ET*値(65MNET*)[]
21)	65MNSET	65MN による SET*値(65MNSET*)[]
22)	t1	頭部コア温(鼓膜温に相当)[]
23)	t5	胸部コア温(内臓温度に相当)[]
24)	t13	腰部コア温(直腸温に相当)[]
25)	t65	中央血液溜まり温度(心臓血液温度に相当)[]

65MNET*および65MNSET*は、65MNの人体熱モデルによる生理量予測値等を用いて 算出した有効温度です。算出方法はGaggeらによるET*およびSET*の算出方法に基づいて います。65MNSET*は均一温熱環境下でSET*とよい一致が得られています。さらに65MN は温熱環境分布を考慮できるので不均一温熱環境の評価が可能です。McIntyreは、SET*が 22.2 ~ 25.6 の温熱環境を人間は快適と感じるとしています。 6-2 SK 出力ファイル

16 部位の皮膚温の経時変化が出力されます。例えば"4HEAD"の表記は、頭部皮膚温 を表します。"4"は頭部皮膚層を表します。1 が頭部コア層、2 が頭部筋肉層、3 が頭部脂 肪層になります。同様にして、"5"は胸部コア層を表すことになります。

6-3 H出力ファイル

熱伝達率の経時変化が出力されます。

1)	hr	線形放射熱伝達率(全身)[W/m゜]
2)	hc	対流熱伝達率(全身)[W/m']
3)	h	総合熱伝達率(全身)[W/m']
4)	he	皮膚表面から環境までの顕熱伝達率
		(着衣熱抵抗を含む)(全身)[W/m ~]
5)	ht	皮膚表面から環境までの潜熱伝達率
		(着衣熱抵抗を含む)(全身)[W/m ² kPa]

ht の次列から、16部位それぞれの対流熱伝達率[W/m²]が記されます。さらにその次列から 16部位それぞれの総合熱伝達率[W/m²]が記されます。

6-4 |出力ファイル

計算条件に与えた着衣量を確認するためのファイルです。16 部位それぞれの着衣量 [clo]と全身の着衣量Icl[clo]が出力されます。このファイルでは他のCSVファイルと異なり、 各 Phase の値が出力されます。すなわち、第2行が第1 Phase の値、第3行が第2 Phase の 値を表します。

6-5 Data 出力ファイル

入力した計算条件を確認するためのファイルです。計算実行後にこのファイルを確認 すれば、想定したシナリオ通りの計算条件が与えられているか、あるいは、AutoInputText ファイルの記述が間違っていなかったかを確かめることができます。

7 計算例

65MN の計算 2 例を示します。7-1 に"2 クイックスタート"で行ったシミュレーションの計算条件と計算結果、7-2 に自動車室内のクールダウンを想定したシミュレーション例について示します。

7-1 作用温度のステップチェンジ

"2 クイックスタート"および"5-1 "Data Files"ボタンで始める計算実行(個別入力)"で行ったシミュレーションについて説明します。計算条件をグラフに示します。第1 Phase は作用温度 28.5 の 60 分間曝露、第 2 Phase は 22.0 の 120 分間曝露です。両 Phase とも、代謝量 45.3W/m²、着衣量 0.00clo(裸体)です。

tsk(平均皮膚温)とt1(頭部コア温)の経時変化を示します。tskが環境の変化に伴って大きく変化する一方で、t1はあまり変化しないことがわかります。

次に 22.0 環境曝露の終了時(180 分経過後)の各部位皮膚温を示します。Hand や Foot で低い皮膚温が予測されています。

7-2 自動車室内のクールダウンのシミュレーション

「夏季の屋外に放置された自動車に乗り込み 27 分間冷房を行う」というシナリオのシ ミュレーションを行います。グラフのような環境変化に人体が曝露されます。第 1 Phase が屋外環境、第 2 Phase が放置された自動車室内環境、第 3 Phase から第 6 Phase までがク ールダウン過程です。クールダウン過程の車室内環境変化は実測データを参考に仮定しま した。本シミュレーションでは簡単に全身一様の温熱環境条件を与えます。シミュレーシ ョン中、代謝量は 58.2W/m²、着衣量は全身で 0.60clo の一定値とします。計算条件を記し た AutoInputText ファイルが、『AutoInputText』フォルダ内の『CoolDown.txt』として用意し てあります。"AutoInput" ボタンを用いて計算条件を入力してください。『CoolDown.txt』 には曝露時間 0min.の第 7 Phase が記述されています。これは第 6 Phase のランプチェンジ の変化最終点を定めるためのものです。

tsk(平均皮膚温)とt1(頭部コア温)の経時変化を示します。tsk はクールダウン開始 から6分後に低下を始めています。t1 はあまり変化せず 36.6~36.9 の間にあります。

Esk(皮膚からの蒸発熱損失量)[W/m²]、Qdry(皮膚からの顕熱損失量)[W/m²]、Qsk (皮膚からの全熱損失量)[W/m²]の経時変化を示します。Esk は発汗の度合いと関係が深い 量であり、なだらかな変化をしています。Qdry はクールダウン開始から 22 分後まで受熱 側を表す負値となっています。Qsk はクールダウン開始から 8 分後までは負値となってお り、人体の皮膚表面が周囲環境から熱を受け取っていたことがわかります。すなわち皮膚 表面の冷却はそれ以降の時間で起こっていることになります。

本シミュレーションでは、簡単に全身一様の温熱環境条件を与えていること、人体の 日射受熱および人体とシートやハンドルとの熱伝導を考慮していないことに注意が必要で す。

Appendix

学術論文

田辺新一,中野淳太,小林弘造 温熱環境評価のための65分割体温調節モデルに関する研究, 日本建築学会計画系論文報告集,第541号,2001.3(掲載予定)

温熱環境評価のための 65 分割体温調節モデルに関する研究 DEVELOPMENT OF 65-NODE THERMOREGULATION-MODEL FOR EVALUATION OF THERMAL ENVIRONMENT

田辺 新一*, 中野 淳太 **, 小林 弘造 *** Shin-ichi TANABE, Junta NAKANO, Kozo KOBAYASHI

The 65-Node Thermoregulation-Model was developed, based on Stolwijk model. The model has 16 body parts. Each body part consists of core, muscle, fat and skin. In addition, the model has a central blood compartment. Convective and radiative heat transfer coefficients were derived from the thermal manikin experiments. Under steady state condition, mean skin temperature, skin wettedness and SET* agreed well with those by 2 node-model. This model can predict fairly well for skin temperature distribution under thermal neutrality. Under transient condition, trends of mean skin temperature and evaporative heat loss were similar to the subject experiment by Stolwijk.

Keywords: Thermal comfort, Numerical model, Simulation, Non-uniform, Unsteady state 熱的快適性, 数値計算, シミュレーション, 不均一, 非定常状態

1. はじめに

過去 50 年以上にわたる温熱環境指標に関する研究の中で、PMV (Predicted Mean Vote)¹⁾ 及び SET*(Standard New Effective Temperature)²⁾ は、温熱環境指標として広く使用されている。いずれの指標も人体を 均一な発熱体とし、着衣を人体表面上の均一な熱抵抗としてモデル化 しており、その適用は分布の少ない均一或いは均一に近い環境に限ら れる。しかし、人間が曝露される温熱環境は不均一であることが多 い。また、人体の各部位はそれぞれ形態的・生理的な部位特性を持ち、 着衣による熱抵抗も、部位により異なる。一方、車室内、パーソナル 空調空間、半屋外空間などの不均一な温熱環境が生じ易い空間の評価 が望まれており、不均一を考慮できる体温調節モデルが必要とされて いる。さらに、温熱環境変化に対する非定常応答を予測できることが 望ましい。

数値計算によって、不均一かつ非定常状態の温熱環境が人間に与え る影響を精度よくシミュレートすることが可能となれば、被験者実験 や現場環境実測に要する労力を少なくして熱的快適性評価ができ、実 測・実験が困難である様な極限状態の環境評価や、設計段階での建築 物やその周辺環境の事前評価が可能になる。

人体の体温調節系モデルの研究は1960 ~ 1970年代前半に多く行われ、Atkinsモデル³、Wisslerモデル⁴、Gaggeらの2 node-model²、Stolwijk & Hardyのモデル⁵、Stolwijkのモデル⁶⁷⁾などが提案されている。また、最近ではSmithによるモデル⁸⁾が提案されている。Smithのモデ

* 早稲田大学理工学部建築学科	助教授・工博
** 早稲田大学大学院理工学研究科	博士後期課程・工修
*** 早稲田大学大学院理工学研究科	修士課程

ルでは、生体内伝熱を有限要素法を用いて解いている。Smithのモデ ルを発展させたものが、竹森らのモデル⁹⁰で、体温調節において重要 性が指摘されている動静脈吻合血管(AVA)を考慮している。また、Fu のモデル¹⁰⁰はSmithのモデルを改良し、着衣の非定常熱伝達を考慮し たものである。カンサス州立大学のJonesはSET*の2node-modelを 元に人体を分割したtrans-mod¹¹⁰モデルを提案し、着衣の非定常熱伝達 を取り扱っている。日本では、川島による人体制御モデル研究¹²⁰、横 山による生体内熱移動に関する研究¹³⁰が行われている。

我々の研究グループは、Stolwijkのモデルをもととして、皮膚温可 変型サーマルマネキン¹⁴⁾と同様に人体を16部位分割した「65分割体 温調節モデル 65MN(Multi Nodes)」を開発した。本モデルでは、サー マルマネキン測定による人体各部位別着衣量、代謝量、及び各部位別 の温熱環境4要素と、各環境条件下の曝露時間を入力することによっ て、生理・心理量を数値計算により推定する。本論文では、本モデル について定数・係数を含めて示すと共に、本モデルとSET*の2 nodemodel、Stolwijkモデルとの計算結果の比較、及び既存の被験者実験結 果との比較を行った。

2. 計算モデル

65 分割モデルでは、体重 74.430kg、体表面積 1.870m^{2注1)} の男性を 想定し、部位分割は皮膚温可変型サーマルマネキン¹⁴⁾と同様な 16 部 位分割(Head, Chest, Back, Pelvis, Left Shoulder, Right Shoulder, Left Arm,

Assoc. Prof. Dept.of Architecture, Waseda University, D.Eng. Graduate Student, Waseda University, M.Sc. Graduate Student, Waseda University Right Arm, Left Hand, Right Hand, Left Thigh, Right Thigh, Left Leg, Right Leg, Left Foot, Right Foot) とした。表1に分割部位及び部位表面積 $A_{Du}(i)$ [m²]、部位重量を示す^{注2)}。以下の式中で分割部位はi(1 ~ 16)で示す。各部位はCore, Muscle, Fat, Skin の4層に分割されている。層方向の分割をj(1 ~ 4)で表す。計 64Nodes となるが、65番目の Node として中央血液溜まりを考える。モデルの概念図を図1に示す。同じ部位内の4層は伝導によって熱交換し、Skin層は外部環境と対流、放射、蒸発によって熱交換を行う。また、すべての Node は中央血液溜まり と血流輸送による熱交換を行う。

表1 分割部位及び部位表面積、部位重量

i	部位	A _{Du} (i) [m ²]	Weight[kg]
1	Head	0.140	4.020
2	Chest	0.175	12.400
3	Back	0.161	11.030
4	Pelvis	0.221	17.570
5	L-Shoulder	0.096	2.163
6	R-Shoulder	0.096	2.163
7	L-Arm	0.063	1.373
8	R-Arm	0.063	1.373
9	L-Hand	0.050	0.335
10	R-Hand	0.050	0.335
11	L-Thigh	0.209	7.013
12	R-Thigh	0.209	7.013
13	L-Leg	0.112	3.343
14	R-Leg	0.112	3.343
15	L-Foot	0.056	0.480
16	R-Foot	0.056	0.480
-	全身	1.870	74.430

3. 各部の熱平衡式

各部における熱平衡式は式(1)~(5)のように表される^{注3)}。熱平衡 式中の各々の項に関しては、3-1から順に述べる。

・Core 層における熱平衡式

$C(i,1)\frac{dT(i,1)}{dt} = Q(i,1) - B(i,1) - D(i,1) - RES(i,1)$	(1)
--	-----

・Muscle 層における熱平衡式 $C(i,2) \frac{dT(i,2)}{dt} = Q(i,2) - B(i,2) + D(i,1) - D(i,2)$...(2)

・Fat 層における熱平衡式

$$C(i,3)\frac{dT(i,3)}{dt} = Q(i,3) - B(i,3) + D(i,2) - D(i,3) \qquad \dots (3)$$

- ・Skin 層における熱平衡式 $C(i,4) \frac{dT(i,4)}{dt} = Q(i,4) - B(i,4) + D(i,3) - Q_t(i,4) - E(i,4)$...(4)
- ・中央血液溜まりにおける熱平衡式

$$C(65)\frac{dT(65)}{dt} = \sum_{i=1}^{16} \sum_{j=1}^{4} B(i,j) \qquad \dots(5)$$

3-1 熱容量

C(*i,j*)[kJ/K] は各 Node の熱容量、T(*i,j*)[] は温度である。表2に各 Node を構成する組織の比熱から算出した熱容量を示す。各組織の比 熱は、骨2.088kJ/kgK、皮下脂肪2.506kJ/kgK、その他3.758kJ/kgK と した。中央血液溜まりには、Stolwijk モデルと同様に2.500Lの血液が あるとした。中央血液溜まりの比熱3.758kJ/kgK と乗じられ、中央血液溜まりの熱容量は9.396kJ/K となる。この分の熱容量は Chest 部位 および Back 部位の Core 層から均等に差し引いた^{注4}。すなわち、重量 と比熱から求めた Chest 部位と Back 部位の Core 層の熱容量はそれぞれ、15.192kJ/K、13.594kJ/K であるが、中央血液溜まりの熱容量とし てそれぞれから 4.698kJ/K を引いた結果、10.494kJ/K、8.895kJ/K とし ている。

表2 各 Node 熱容量 [kJ/K]	
----------------------	--

+----

i	部位	Core	Muscle	Fat	Skin
1	Head	9.275	1.391	0.927	1.015
2	Chest	10.494	20.408	5.387	1.503
3	Back	8.895	18.078	4.761	1.391
4	Pelvis	21.661	28.789	7.567	2.180
5	L-Shoulder	1.811	3.881	0.745	0.545
6	R-Shoulder	1.811	3.881	0.745	0.545
7	L-Arm	1.156	2.452	0.470	0.357
8	R-Arm	1.156	2.452	0.470	0.357
9	L-Hand	0.296	0.132	0.188	0.357
10	R-Hand	0.296	0.132	0.188	0.357
11	L-Thigh	5.993	12.976	2.017	1.522
12	R-Thigh	5.993	12.976	2.017	1.522
13	L-Leg	2.856	6.173	0.965	0.733
14	R-Leg	2.856	6.173	0.965	0.733
15	L-Foot	0.499	0.132	0.276	0.451
16	R-Foot	0.499	0.132	0.276	0.451
-	中央血液溜まり				9.396

3-2 産熱量

Q(i,j)[W] は産熱量であり、(6) 式で表現される。産熱量は、基礎代 謝量 $Q_b(i,j)$ [W]、外部仕事による熱産生量W(i,j)[W]、ふるえ熱産生量 Ch(i,j)[W]の和である^{注5)}。表 3 に各 Nodeの基礎代謝量を示す。外部 仕事とふるえによる熱産生は、Muscle層でのみ発生し、W(i,2)、Ch(i,2)のみ非0の値を持ち得るものとする。

$Q(i,j) = Q_b(i,j) + W(i,j) + Ch(i,j)$	(6)
$W(i,2)=58.2(met-Q_{b})A_{Du}Metf(i)$	(7)

式 (7) の met[met] は活動の種類より推定される全身の代謝量、 Q_{b} [met] は全身の基礎代謝量、 A_{Db} [m²] は全身の体表面積である。 Q_{b} は表 3 に 示した各 Node 基礎代謝量の合計から得られ 0.778met である。met が これを下回ることはないとしている。すなわち、W(i,2) が負値となる 場合は0W とする。Metf(i)[-] は仕事熱産生についての各部位 Muscle 層 の全身に対する分布係数である^注。これを表 3 に示す。ふるえ熱産生 量 Ch(i,2) の算出式については後述する。

表3 各 Node 基礎代謝量 [W] と各部位の Metf 値 [-]

				_		
i	部位	Core	Muscle	Fat	Skin	Metf(i)
1	Head	16.843	0.217	0.109	0.131	0.000
2	Chest	21.182	2.537	0.568	0.179	0.091
3	Back	18.699	2.537	0.501	0.158	0.080
4	Pelvis	8.050	4.067	0.804	0.254	0.129
5	L-Shoulder	0.181	0.423	0.610	0.050	0.026
6	R-Shoulder	0.181	0.423	0.610	0.050	0.026
7	L-Arm	0.094	0.220	0.031	0.026	0.014
8	R-Arm	0.094	0.220	0.031	0.026	0.014
9	L-Hand	0.045	0.022	0.023	0.050	0.005
10	R-Hand	0.045	0.022	0.023	0.050	0.005
11	L-Thigh	0.343	0.824	0.151	0.122	0.201
12	R-Thigh	0.343	0.824	0.151	0.122	0.201
13	L-Leg	0.102	0.220	0.035	0.023	0.099
14	R-Leg	0.102	0.220	0.035	0.023	0.099
15	L-Foot	0.122	0.035	0.056	0.100	0.005
16	R-Foot	0.122	0.035	0.056	0.100	0.005
-	Total				84.652	1.000

3-3 血液による熱輸送

B(i,j) [W] は中央血液溜まりと各 Node との熱交換であり(8) 式にて 表現される。 [-] は血液の対向流熱交換効率、 *C*[J/mLK] は血液の 体積比熱(密度と比熱の積) *BF(i,j)*[mL/s] は血流量である。また、 *T*(65)[]] は中央血液溜まりの温度である。

$$B(i,j)=$$
 $C \cdot BF(i,j)(T(i,j)-T(65))$...(8)
本論文では =1.000、 $C=3.842$ J/mLKとした。

(9) 式は Skin 層を除く各層の血流量を表す。*BFB(i,j)*[mL/s] は基礎血 流量であり表4に本計算で用いた値を示す。各 Node の血流量増加は 産熱量増加に依存すると考えている。すなわち、1.000W の産熱のた めに、0.239mL/s の血流が必要であるという仮定をした^{注7)}。Muscle 層 (*j*=2) を除いた Core 層・Fat 層においては *W(i,j)* 及び *Ch(i,j)*は0W であ るから血流量は体温調節制御や代謝量変化にかかわらず常に基礎血流 量に等しいものとした。

BF(i,j) = BFB(i,j) + 0.	(9)	
表4	各 Node 基礎血流量 [mL/s]	

i	部位	Core	Muscle	Fat	Skin
1	Head	12.500	0.242	0.094	0.622
2	Chest	21.625	2.128	0.372	0.500
3	Back	21.206	2.128	0.372	0.375
4	Pelvis	5.053	3.411	0.600	0.578
5	L-Shoulder	0.089	0.356	0.044	0.239
6	R-Shoulder	0.089	0.356	0.044	0.239
7	L-Arm	0.044	0.186	0.024	0.125
8	R-Arm	0.044	0.186	0.024	0.125
9	L-Hand	0.025	0.022	0.012	0.253
10	R-Hand	0.025	0.022	0.012	0.253
11	L-Thigh	0.101	0.238	0.042	0.106
12	R-Thigh	0.101	0.238	0.042	0.106
13	L-Leg	0.020	0.019	0.005	0.031
14	R-Leg	0.020	0.019	0.005	0.031
15	L-Foot	0.014	0.003	0.005	0.125
16	R-Foot	0.014	0.003	0.005	0.125
-	Total				76.057

3-4 伝導による熱交換

D(*i*,*j*)[W] は、同じ部位内の隣接する層との伝導による熱交換で、 (10)式にて表現される。*Cd*(*i*,*j*)[W/]は隣接する層との間の熱コンダ クタンスであり本計算で用いた値を表5に示す。

D(i,j) = Cd(i,j)(T(i,j)-T(i,j+1))

...(10)

表 5 各 Node 間の熱コンダクタンス [W/]						
i	部位	Core-Muscle	Muscle-Fat	Fat-Skin		
1	Head	1.601	13.224	16.008		
2	Chest	0.616	2.100	9.164		
3	Back	0.594	2.018	8.700		
4	Pelvis	0.379	1.276	5.104		
5	L-Shoulder	0.441	2.946	7.308		
6	R-Shoulder	0.441	2.946	7.308		
7	L-Arm	0.244	2.227	7.888		
8	R-Arm	0.244	2.227	7.888		
9	L-Hand	2.181	6.484	5.858		
10	R-Hand	2.181	6.484	5.858		
11	L-Thigh	2.401	4.536	30.160		
12	R-Thigh	2.401	4.536	30.160		
13	L-Leg	1.891	2.656	7.540		
14	R-Leg	1.891	2.656	7.540		
15	L-Foot	8.120	10.266	8.178		
16	R-Foot	8.120	10.266	8.178		

3-5 呼吸による熱損失

呼吸による熱損失は Chest 部位 Core 層で考慮する。すなわち *RES*(2,1)[W] は (11) 式^{注8)} で表される。

 $RES(2,1) = \{0.0014(34 - t_a(1)) + 0.017(5.867 - p_a(1))\}$

$$\sum_{i=1}^{16} \sum_{j=1}^{4} Q(i, j) \qquad \dots (11)$$

ここで、 $t_a(1)$ []、 $p_a(1)$ [kPa] はそれぞれ Head 部位での空気温度、水 蒸気圧である。

3-6 蒸発熱損失

E(i,4)[W] は Skin 層における蒸発熱損失量であり、(12) 式のように 表現される。 $E_b(i,4)$ [W] は不感蒸泄による熱損失量であり、(13) 式で 示される。また、 $E_{aa}(i,4)$ [W] は発汗による蒸発熱損失量である。

$$E(i,4) = E_b(i,4) + E_{sw}(i,4) \qquad \dots (12)$$

$$E_i(i,4) = 0.06(1-E_i(i,4)/E_i(i)) \cdot E_i(i) \qquad \dots (13)$$

ここで、 $E_{max}(i)$ [W] は最大蒸発熱損失量であり、(14) 式から求められる。Stolwijkモデル^(s)では、不感蒸泄に関しては定数を与えているが、この値は $E_{max}(i)$ のおよそ3 ~ 4%に相当するものである。本研究では、各部位 Skin 層における不感蒸泄として、発汗がなくとも最大蒸発熱損失量の 6%の熱損失があるという仮定をした。

$$E_{max}(i)=h_e(i) (p_{sk,s}(i)-p_a(i))A_{Du}(i)$$
 ...(14)
ここで、 $h_e(i)$ [W/m²kPa] は皮膚表面から環境までの潜熱伝達率、
 $p_{sk,s}(i)$ [kPa] は皮膚表面での飽和水蒸気圧、 $p_a(i)$ [kPa] は環境の水蒸気
圧、 $A_{Du}(i)$ [m²] は各部位表面積である。

皮膚表面から環境までの潜熱伝達率 h_e(i) は着衣の透湿係数 i_{cl}(i) [-] を用いた表現とし (15) 式で求められる。

$$h_{e}(i) = LR \cdot i_{cl}(i) / \left(0.155I_{cl}(i) + \frac{i_{cl}(i)}{h_{c}(i) \cdot f_{cl}(i)} \right) \qquad \dots (15)$$

Stolwijk⁰⁷⁾ モデルでは着衣熱抵抗が考慮されていないが、65分割モデルではサーマルマネキン測定による各部位別の着衣熱抵抗 $I_{cl}(i)$ [clo]を考慮するものとした。 $h_c(i)$ [W/m²]は人体の対流熱伝達率、 $f_{cl}(i)$ [-]は着衣面積比である。LR[/kPa]はルイス係数であり、LR=16.5 /kPa である。また、全身各部位について $i_{cl}(i)$ =0.45を仮定する^{注915}。本論文では着衣は顕熱・潜熱抵抗としてのみ取り扱っており、熱容量、吸放湿に関しては考えていない。

3-7 皮膚表面の顕熱交換

 $Q_{t}(i,4)$ [W] は皮膚表面と環境の対流および放射熱交換であり、(16) 式のように総合熱伝達率を用いた表現とした。 $h_{t}(i)$ [W/m²]は皮膚か ら環境までの総合熱伝達率、 $t_{o}(i)$ []は作用温度である。

 $Q_i(i,4) = h_i(i)(T(i,4) - t_o(i))A_{Du}(i)$ (16) $h_i(i)$ は clo 値を用いると(17)式のように表現される。すなわちその逆数は、着衣量 $I_c(i)$ [clo]と着衣外表面における表面空気層の熱抵抗の和として表現できる。 $h_i(i)$ [W/m²]は有効放射面積率を考慮した線形放射熱伝達率である。

$$\frac{1}{h_t(i)} = 0.155I_{cl}(i) + \frac{1}{(h_c(i) + h_r(i))f_{cl}(i)} \qquad \dots (17)$$

65 分割モデルの部位分割は皮膚温可変型サーマルマネキン¹⁴⁾ に対応しているので、 $h_c(i)$ 、 $h_r(i)$ の値には、サーマルマネキンによる測定値¹⁶⁾を用いることができる。本論文では、部位別測定値(対流熱伝達率については気流条件毎の測定値)に、(18) ~ (20)式で示される Mod_c 、 Mod_r 係数を乗じて熱伝達率を算出するものとした^{注10)}。 Mod_c は(18)式による値と(19)式による値の大きい方とした。v[m/s]、 $h_c[W/m^2]$ 、

表6 静穏気流下(0.13m/s以下)のh_c(i)とh_c(i)

			c' r'
i	部位	<i>h_c(i)</i> [W/m´]	<i>h , (i)</i> [W/m´]
1	Head	4.5	4.9
2	Chest	3.0	4.3
3	Back	2.9	4.1
4	Pelvis	2.9	4.3
5	L-Shoulder	3.6	4.5
6	R-Shoulder	3.6	4.5
7	L-Arm	3.6	4.4
8	R-Arm	3.6	4.4
9	L-Hand	3.7	4.2
10	R-Hand	3.7	4.2
11	L-Thigh	2.8	4.8
12	R-Thigh	2.8	4.8
13	L-Leg	2.0	5.3
14	R-Leg	2.0	5.3
15	L-Foot	2.0	6.1
16	R-Foot	2.0	6.1
-	全身	3.0	4.7

h₁[W/m²]はそれぞれ、面積重み付け平均した全身の相対気流速度、 対流熱伝達率の測定値、線形放射熱伝達率の測定値である。表6に立 位サーマルマネキン測定値に基づいて算出した静穏気流下(0.13m/s 以下)のh₁(*i*)とh₂(*i*)を示す。

c /	
$Mod_{c} = 8.6v^{0.53}/h_{c}$	(18)
$Mod_c = 3.0/h_c$	(19)
Mod = 4.7/h	(20)

SET*の2 node-model²では、対流熱伝達率を代謝量の関数として、作業時の相対気流速度増加を考慮しているが、本論文では考慮しない。

また、サーマルマネキンの等価温度¹⁴⁾を計算に用いることも可能である。この場合は、*h_i(i)*を標準状態に固定し、作用温度の代わりに各部位等価温度を入力することによって*Q_i(i,4)*を求める。

4. 制御系

4-1 センサー信号

エラーシグナル *Err(i,j)*[]は、式(21)に示す通り、各 Node の温度 *T(i,j)*[]とセットポイント温度との差、及び受容器の非定常特性の和 とした。本論文で用いた各 Node のセットポイント温度及び計算の初 期温度である $T_{set}(i,j)$ []を表 7 に示す。このうちセットポイント温度 として機能するのは Head 部位 Core 層、各部位 Skin 層のみである。

 $Err(i,j) = (T(i,j) - T_{set}(i,j)) + RATE(i,j) + F(i,j)$...(21) ここで、RATE(i,j)[s] は温度受容器の動的感度、F(i,j)[/s] は微小温度 変化量である。 $T_{set}(i,j) \ge RATE(i,j)$ は制御系の特性であり、定数とし て与えられる。RATE(i,j)はこれまでの研究では定量的に明らかになっ ていないので、本論文では0とした。これに関してはSET*の2 nodemodel²⁾でも同様の取り扱いとしている。今後、RATE(i,j)が定量的に明 らかになった時点で非0の数値を与えることができる。

温・冷温度受容器に対応して、Warmシグナル(*Wrm(i,j)* [])とCold シグナル(*Cld(i,j)* [])を(22)、(23)式で定義する。

Err(i,j) が正の値のとき温受容器が動作中とし、

Wrm(i,j) = Err(i,j), Cld(i,j) = 0

Err(i,j) が負の値のとき冷受容器が動作中とし、

Cld(i,j) = -Err(i,j), Wrm(i,j) = 0 ...(23)

表7 各 Node セットポイント温度および初期温度[]

/	部位	Core	Muscie	Fat	SKIN
1	Head	36.9	36.1	35.8	35.6
2	Chest	36.5	36.2	34.5	33.6
3	Back	36.5	35.8	34.4	33.2
4	Pelvis	36.3	35.6	34.5	33.4
5	L-Shoulder	35.8	34.6	33.8	33.4
6	R-Shoulder	35.8	34.6	33.8	33.4
7	L-Arm	35.5	34.8	34.7	34.6
8	R-Arm	35.5	34.8	34.7	34.6
9	L-Hand	35.4	35.3	35.3	35.2
10	R-Hand	35.4	35.3	35.3	35.2
11	L-Thigh	35.8	35.2	34.4	33.8
12	R-Thigh	35.8	35.2	34.4	33.8
13	L-Leg	35.6	34.4	33.9	33.4
14	R-Leg	35.6	34.4	33.9	33.4
15	L-Foot	35.1	34.9	34.4	33.9
16	R-Foot	35.1	34.9	34.4	33.9
-	中央血液溜まり				36.7

4-2 統合信号

皮膚からのセンサーシグナルは、中枢にて統合されると考える。 皮膚温受容器からの重み付け出力(Wrms[])、皮膚冷受容器からの 重み付け出力(Clds[])は(24)、(25)式のように示される。SKINR(i)[-]は皮膚からのセンサーシグナルを統合するための部位別重み付け係 数であり、表8に示す。

$$Wrms = \sum_{i=1}^{16} (SKINR(i) \cdot Wrm(i,4)) \qquad \dots (24)$$

$$Clds = \sum_{i=1}^{\infty} (SKINR(i) \cdot Cld(i,4)) \qquad \dots (25)$$

表8 各部位 Skin 層の全身に対する重み付け係数 [-] および分布係数 [-] と各部位 Chilf 値 [-]

<u> </u>						.
i	部位	SKINR(i)	SKINS(i)	SKINV(i)	SKINC(i)	Chilf(i)
1	Head	0.070	0.081	0.132	0.022	0.020
2	Chest	0.149	0.146	0.098	0.065	0.258
3	Back	0.132	0.129	0.086	0.065	0.227
4	Pelvis	0.212	0.206	0.138	0.065	0.365
5	L-Shoulder	0.023	0.051	0.031	0.022	0.004
6	R-Shoulder	0.023	0.051	0.031	0.022	0.004
7	L-Arm	0.012	0.026	0.016	0.022	0.026
8	R-Arm	0.012	0.026	0.016	0.022	0.026
9	L-Hand	0.092	0.016	0.061	0.152	0.000
10	R-Hand	0.092	0.016	0.061	0.152	0.000
11	L-Thigh	0.050	0.073	0.092	0.022	0.023
12	R-Thigh	0.050	0.073	0.092	0.022	0.023
13	L-Leg	0.025	0.036	0.023	0.022	0.012
14	R-Leg	0.025	0.036	0.023	0.022	0.012
15	L-Foot	0.017	0.018	0.050	0.152	0.000
16	R-Foot	0.017	0.018	0.050	0.152	0.000
-	Total	1.000	1.000	1.000	1.000	1.000

5. 体温制御方法

制御系の式は全て、制御係数とHead 部位 Core 層からのセンサー シグナルの結果から成る項、制御係数と各部位 Skin 層からの統合シ グナルの結果から成る項、制御係数と Head 部位 Core 層からのセン サーシグナル及び各部位 Skin 層からの統合シグナルの結果から成る 項を持つ^{注11)}。制御方法には、血管運動(皮膚血管拡張・収縮)発汗、 ふるえ熱産生がある。各体温制御反応に関する各部位 Skin 層の全身 に対する分布係数は、表8に示す値を用いて計算を行った。また各体 温制御反応の制御係数を表9に示す^{注12)}。以下に示す各制御式から求 められる DL、ST、 $E_{sv}(i,4)$ 、Ch(i,2)は、ある環境のもとでは負値とな ることがあるが、その時は0とする。

表9 各体温制御反応の制御係数

	Core(C)	Skin(<i>S</i>)	Core × Skin(P)
発汗(<i>sw</i>)	371.2 (W/)	33.6 (W/)	0.0 (W/ ²)
ふるえ熱産生(ch)	0.0 (W/)	0.0 (W/)	24.4 (W/ 2)
血管拡張(dl)	32.5 (mL/s)	2.1 (mL/s)	$0.0 (mL/s^{-2})$
血管収縮(st)	11.5 (1/)	11.5 (1/)	0.0 (1/ ²)

5-1 血管運動

...(22)

Skin 層の血流量 *BF(i,4)*[mL/s] は (26) 式で表される。*DL*[mL/s] は血管拡張に関するシグナル、*ST*[-] は血管収縮に関するシグナルで各々 (27)、(28) 式のように表現される。*SKINV(i)*[-]、*SKINC(i)*[-]^{注13} は*DL*、 *ST* についての各部位 Skin 層の全身に対する分布係数である。

$BF(i \ 4) = \frac{BFB(i,4) + SKINV(i) \cdot DL}{km(i \ 4)}$	(26)
$1 + SKINC(i) \cdot ST$	(20)
DL=CdlErr(1,1)+Sdl(Wrms-Clds)+PdlWrm(1,1)Wrms	(27)

ST = -CstErr(1,1) - Sst(Wrms - Clds) + PstCld(1,1)Clds ...(28)

ここで、*Cdl*[mL/s]、*Sdl*[mL/s]、*Pdl*[mL/s ²] はそれぞれ Head 部 位 Core 層、各部位 Skin 層、Head 部位 Core 層と各部位 Skin 層からの 血管拡張制御係数、*Cst*[1/]、*Sst*[1/]、*Pst*[1/ ²] も、それぞれ同様 に、血管収縮制御係数である。

(26) 式の km(i,4)[-] はイフェクター動作量と呼ばれ (29) 式で表される。Err(i,4)[]は各部位 Skin 層におけるエラーシグナル、RT(i,4)[]はイフェクター動作量が 2 となるための必要温度幅である。本論文では、全身各部位について RT(i,4)=10 を仮定した^{注14)}。

 $km(i,4) = 2.0^{Err(i,4)/RT(i,4)} \qquad \dots (29)$

5-2 発汗

発汗による蒸発熱損失量 $E_{sw}(i,4)$ [W] は、(30) 式で示される。 SKINS(i)[-]は、発汗についての各部位Skin層の全身に対する分布係数 である。

 $E_{sw}(i.4) = \{ CswErr(1,1) + Ssw(Wrms-Clds) + PswWrm(1,1)Wrms \}$ $\cdot SKINS(i) \cdot km(i,4) \qquad \dots (30)$

ここで、Csw[W/]、Ssw[W/]、 $Psw[W/^2]$ はそれぞれ Head 部位 Core 層、各部位 Skin 層、Head 部位 Core 層と各部位 Skin 層からの発 汗制御係数である。

5-3 ふるえ熱産生

ふるえ熱産生量 Ch(i,2)[W] は(31) 式で表される。 $Ch(i,2) = \{-CchErr(1,1)-Sch(Wrms-Clds)+PchCld(1,1)Clds\}$

• Chilf(i)

ここで、*Cch*[W/]、*Sch*[W/]、*Pch*[W/²]はそれぞれHead部位Core 層、各部位 Skin 層、Head 部位 Core 層と各部位 Skin 層からのふるえ制 御係数である。Chilf(i)[-] はふるえ熱産生についての各部位 Muscle 層 の全身に対する分布係数であり、表8に示す。

...(31)

6. 65 分割体温調節モデルによる SET* の算出

65分割モデルでは、各部位皮膚温を面積重み付けした平均皮膚温 t_{el} []、全身のぬれ率w[-]、皮膚表面からの熱損失量 Q_{el} [W/m²]を用い て、65MNSET*[]を算出するものとした。その基礎式は(32)式であ る^{注15)}。 $p_{sk,s}$ 、 $p_{65MNSET*s}$ [kPa]は、それぞれ t_{sk} []、65MNSET*[]におけ る飽和水蒸気圧である。

 $Q_{sk} = h_{s}(t_{sk} - 65MNSET^*) + h_{es} \cdot w(p_{sk,s} - 0.5p_{65MNSET^*,s})$...(32) h_[[W/m²]は標準化した総合熱伝達率であり、(33)式で示される。

$$\frac{1}{h_{ts}} = 0.155I_{cls} + \frac{1}{(h_{cs} + h_{rs})f_{cls}} \qquad \dots (33)$$

ここで、 I_{cls} [clo]、 h_{cs} [W/m²]、 h_{rs} [W/m²]、 f_{cls} [-]はそれぞれ標準化し た着衣量、対流熱伝達率、線形放射熱伝達率、着衣面積比である。 は代謝量により修正され、(34)式で示される。

$$I_{cls} = \frac{1.3264}{(met + 0.7383)} - 0.0953 \qquad \dots (34)$$

h_cは代謝量増加による相対気流速度の増加を考慮して (35) 式で求め られる。

 $h_{m} = 5.66(met-0.85)^{0.39}$...(35) met < 0.85 metの場合と、(35)式の結果 $h_{cs} < 3.0 W/m^2$ の場合は、 h_{cs} =3.0W/m² とした。また、 h_{rs} =4.7W/m² とした。 f_{cls} は(36)式で示 される。

 $f_{cls} = 1 + 0.3I_{cls}$...(36) また(32)式のh_e[W/m²kPa]は標準化した皮膚から環境までの潜熱伝達 率であり、(37)式で示される。

 $h_{es} = i_{ms} \cdot LR \cdot h_{ts}$...(37) ここで、i_{ms}[-] は標準 i_m係数であり、i_{ms}=0.45 である^{注 16}。

(32) 式~(37) 式を用いることによって、65分割モデルで算出した結 果から部位分割・不均一温熱環境を考慮した SET* 値を計算すること が可能となる。

7. 2 node-model との比較

7-1 計算条件

Gaggeの2 node-model²との比較をおこなった。2 node-modelはSET* 算出のための体温調節人体熱モデルであり、これまで多くの被験者実 験結果との比較がなされている。表10に計算条件を示す。作用温度 10.0 ~ 40.0 まで 2.0 おきに、立位姿勢にて全身一様の温熱環境 に曝露するシミュレーションを行った。

表10	計算条件

曝露時間	60min.	
空気温度Ta	$T_{0}-T_{r} = T_{r} = T_{1} $	
平均放射温度Tr	Ta=TICUCT0.0~40.0 (2.0 ささか)	
相対湿度	50%	
気流速度	0.10m/s	
着衣量	0.00clo	
代謝量	1.0met	

7-2 計算結果·考察

図2に、65分割モデルと2 node-model によって算出した平均皮膚

温、ぬれ率、SET*の比較を示す。平均皮膚温は、快適域より低い作 用温度で1 程度の差がみられる。65分割モデルは2 node-modelに比 べ、発汗開始温度が高い。これは発汗の制御式の違いによるものであ る注17)。65分割モデルでは、発汗制御は頭部コア温の影響が大きい。 そこで 36.9 である頭部コア・セットポイント温度 T_{se}(1,1) を 36.4 として計算すると、発汗開始温度は、ほぼ2 node-model に一致した。 $T_{set}(1,1)$ を変更することで発汗特性の修正ができることを示した。 65MNSET*と2 node-model による SET* は各温度条件で良い一致が得 られた。均一温熱環境下では従来の SET* と対応させて、65MNSET* を用いて温冷感予測が可能である。

8. 定常被験者実験結果との比較

8-1 計算条件

定常状態における 65 分割モデルの皮膚温分布予測値の精度を検証 するため、田村による被験者実験結果
¹⁷⁾
との比較を行った。実験は サーモグラフィーを用いて皮膚温を非接触的に測定し、温熱環境変化 に伴う皮膚温分布の変化について検討している。被験者は19歳から 20歳の日本人女子 27 名、平均体重 50.05kg、平均体表面積 1.44m² で ある。田村は、28 条件が被験者測定時のほぼ温熱中立環境であると しており、その時の被験者の代謝量は、0.7metであった。本論文では 表

ŧ 11	実験及び計算条件	Ŧ

		• •
	初期条件	実験条件
曝露時間[min.]	60	120
空気温度Ta[]	28 5(Ta-Tr)	22 25 28 31 34(Ta-Tr)
平均放射温度Tr[]	20.5(14-11)	22, 23, 26, 31, 34(18-11)
気流速度[m/s]	0.25	0.15
相対湿度[%]	50	50
着衣量[clo]	0.00	0.00
代謝量[met]	0.778	0.778

65分割モデルの体躯を変更することはせず、表1に示した体躯を用 い、表3に示した各Nodeの基礎代謝量の合計から得られる0.778met を計算時のモデルの代謝量とした。実験では被験者はチャンパー内で 必要曝露時間、椅座静位を保った後、皮膚温測定時には立位姿勢を とった。シミュレーションでは実験中常に立位姿勢を仮定した。表11 に実験及び計算条件を示す。

8-2 計算結果・考察

各温度条件下の120分間曝露終了時の測定値と計算値の比較を行った。図3に各温度条件下の平均皮膚温の比較を、図4に22、28、

条件で良い一致が見られる。温熱中立環境を外れるにつれて測定 値と計算値の差が大きくなる傾向があり22 条件で測定値と計算値 の平均皮膚温差は0.7 となった。これは、65分割モデルが、22 条 件で30.0W/m²、28 条件で3.1W/m²のふるえ産熱量を算出したのに 対して、実験では、ふるえ産熱量はほとんど測定されず、22 条件で も2~3W/m²であったことによる。65分割モデルは血流輸送による 熱移動を中央血液溜まりによる1次元熱移動としてモデル化してい る。血流輸送による隣接部位間の熱移動等を考慮することによって低 い温度条件での皮膚温分布予測値は改善できるものと考える。しか し、定性的には、ここで検討した各温度条件で65分割モデルは被験 者の皮膚温分布の傾向を概ね予測できている。

9. Stolwijk モデル・被験者実験結果との比較

9-1 計算条件

65分割モデルの代謝量が変化する場合の計算精度の検証を行うた めに平均皮膚温と潜熱損失量の推移を、Stolwijkの行った被験者実験 結果および65分割モデルの原型であるStolwijkモデル⁷⁷と比較した。 実験では、自転車エルゴメータを使い、被験者は30分おきに休息 運動を繰り返した。代謝量の変化を図5に、実験及び計算条件を表12 に示す。各部位の熱伝達率は簡便のため、立位姿勢のものを用いた。 被験者実験のシミュレーションに先立って、シミュレーション開始後 30分間と同じ温熱環境条件(作用温度30.0 、相対湿度30%、気流 速度0.10m/s、着衣量0.00clo、代謝量45.7W/m²)への60分間曝露の 計算を行い、モデルの各Node温度の初期値とした。

9-2 計算結果·考察

平均皮膚温、蒸発熱損失量の推移を図6に示す。平均皮膚温につい ては、65分割モデルとStolwijk モデルは被験者実験に比べ1.0~1.3 程度高い結果となったが、144.2W/m2運動時を除いて、65分割モデル、 Stolwijk モデル、被験者実験の変化傾向は良く一致している。蒸発熱 損失量についても、144.2W/m²運動時のみ一致が見られず、65分割モ デル及びStolwijk モデルは被験者実験に比べ発汗開始が遅いが、他は 良い一致が見られた。運動終了直後に平均皮膚温が大きく低下するの は、計算上、体内での熱産生量がステップチェンジをするのに対し て、発汗量・皮膚血流量・皮膚からの熱損失量が、なだらかに変化す るためである。本計算では、運動時の相対気流速度の増加を考慮して いない。65分割モデルはStolwijkモデルを拡張し部位分割を増やして いるので、運動時の部位別対流熱伝達率のデータが得られれば、体幹 部の前後や四肢での対流熱損失の違いを考慮できると考える。

10. まとめ

1)Stolwijkのモデルを拡張し、「65分割体温調節モデル」を開発した。 部位分割は皮膚温可変型サーマルマネキンと同様の16部位分割とし た。サーマルマネキン測定による着衣量と熱伝達率を用いて、着衣層 を含めた皮膚表面での伝熱の定式化を行った。定数・係数を含めた計 算モデル・各熱平衡式などを示した。さらに、計算結果を用いて部位 分割・不均一温熱環境を考慮した65MNSET*を算出する方法を示し た。

2)Gagge の 2 node-model との計算結果の比較を行った。その結果、定 常状態での平均皮膚温、ぬれ率共に良い一致が見られた。また、 65MNSET*は2node-modelによるSET*と良く一致した。

3)田村による被験者実験結果との比較を行った。平均皮膚温は温熱中 立環境で良い一致が見られ、それを外れるにつれて計算値と測定値の 差が大きくなる傾向が見られた。しかし、定性的には、ここで検討し た各温度条件で、65分割モデルは被験者の皮膚温分布の傾向を概ね予 測できた。

4)Stolwijkの行った被験者実験のシミュレーションを行い、Stolwijkモ デルおよび被験者実験結果との比較を行った。65分割モデルと Stolwijk モデルの平均皮膚温は、被験者実験結果に比較して 1.0 ~ 1.3

程度高く算出された。蒸発熱損失量については65分割モデル及び Stolwijk モデルは、144.2W/m² 運動時に被験者実験に比べ発汗開始が 遅いが、他は良い一致が見られた。

今後は、65分割体温調節モデルと数値流体解析 (CFD) や、精密人 体放射計算との連成システムの開発を行う予定である。

【注釈】

注1) 文献2)の2 node-modelでは、体重70.0kg、体表面積1.8m²を" average man " としている。ここでの設定は、これにほぼ準ずる。65分割モデルでは、脂肪層 の熱容量及び熱コンダクタンス、体表面積等の変更により体躯の違いを考慮でき る。

注2) 各分割部位に定数として与えられる物理量は、基本的に表面積比を用い て、Stolwijkモデルのものをさらに分割し修正した。

注3) (1)~(5)式の常微分方程式の解法はオイラー法を用いた。

注4) 血液循環による熱交換は、全て中央血液溜まりとの対流による1次元熱交 換として簡略化している。Chest部位およびBack部位と中央血液溜まりとの間の 熱伝導による熱交換は考えない。

注5) 65分割モデルではシミュレーションにあたって、活動の種類により推定 される代謝量を入力する。そのうち、基礎代謝量を上回る分を Metf 値を用いて 各部位に分配する。さらに、センサーシグナルを用いた算出式からふるえ熱産生 が生ずる場合、Chilf値で各部位に分配する。

注6) 表3に示したMetf値は、自転車エルゴメータ運動時の評価値である。本 論文では簡便のため全ての計算でこの値を用いた。

注7) Stolwijk モデルと同様。

注 8) SET*、PMV に用いられている算出式。本論文では SET* の2 node-model との比較を行っているため、この式を用いた。

注9) 文献 15) の「A median value of i, of 0.45 was found for typical fabrics used in

everyday clothing.」との記述を受け、本論文では全身各部位で0.45をいう値を仮 定した。

注10) 熱伝達率の測定値、特に静穏気流下での対流熱伝達率の測定値は、測定 者により大きな差異があり、文献16)では、測定方法によって静穏気流下の対流 熱伝達率がやや大きめの値となっていると考えられる。SET*値の算出にあたり、 65分割モデルによるものと、2 node-modelによるものの整合性を高める目的で 熱伝達率に修正を施すものとした。

注11) 制御系の式は文献6)と文献7)で異なるが、65分割モデルでは、文献7) を用いている。一例として、(27)式に示した血管拡張に関するシグナルDLの算 出式は、文献6)では(27)式のようになる。

 $DL=Cdl \cdot Wrm(1,1)+Sdl \cdot Wrms+Pdl \cdot Wrm(1,1)Wrms$...(27') 制御式におけるこのような各シグナルの扱いの違いは、4つの体温制御方法全て においてである。

注12) 文献7)のStolwijkモデルで用いられた制御係数。ただし、血管収縮の制 御係数 Cst および Sst は、(26) 式にて算出される各部位での血管収縮効果が、対 応するStolwijkモデル各部位でのものと等しくなるよう修正した。

注13) 対応する Stolwijk モデル各部位の SKINC(i) の値を各部位に与え、全身で 計1.000となるよう修正した。SKINC(i)は(26)式分母にて各部位の血管収縮効果 を表現するものであるので、部位分割数が増加すると血管収縮効果が減少する ことになる。そこで血管収縮に関するシグナルSTの算出を注12)に示したよう に改めた。

注14) km(i,4)を用いて、分割部位単位での血流量と発汗量の局所的な増減を表 現した。RT(i,4)=10 を仮定するということは、各部位Skin層の温度が、セット ポイント温度より10 高くなったときに、血流量と発汗量が2倍となるという ことを示す。

注15) 65MNSET*は、椅座静位、着衣量0.6clo、標準i_係数0.45、静穏気流、相 対湿度50%、平均放射温度=空気温度という標準状態において定義する。I」と h...を代謝量の関数として定義を考えることで、異なる代謝量における温冷感評 価を可能としている。これはGaggeらのSET*の算出方法に準ずるものである。 注16) (15)式で示される潜熱伝達率 $h_{i}(i)$ の算出では、 i_{cl} 係数を用いて定式化を 行ったが、ここではi_係数を用いた表現としている。i_係数とi,係数の関係は (i)式で表現される。

 $i_m = (R_{cl} + R_{a,cl}) / [(R_{cl} / i_{cl}) + (R_{a,cl} / i_a)]$ ここで、R_c、R_{acl} [m² /W] はそれぞれ着衣、着衣外表面の熱抵抗である。i [-] は 着衣外表面の空気層の透湿係数であり、対流熱伝達率 h_[W/m²]と線形放射熱 伝達率 h_[W/m²]を用いて (ii) 式で表される。

...(ii) $i_a = h_c / (h_c + h_r)$ 注17) 2 node-modelでは、体温と皮膚温を温度情報として発汗量を算出してい る。文献2)では、体温と皮膚温のセットポイント温度をそれぞれ、36.49、33.7

としている。なお、本論文では2 node-modelの計算に、次の係数を用いた。発 汗制御係数(C_{sw})=170[g/m²hK]、血管拡張制御係数(C_{dil})=200[L/m²hk]、血管収 縮制御係数(S,,)=0.5[-]。

【記号一覧】

i j

分割部位(1 ~ 16)
層方向の分割 <i>(1 ~ 4)</i>

65MNSET* []	65 分割体温調節モデルによる SET* 値
$A_{Du} [m^2]$	全身の体表面積
$A_{Du}(i)$ [m ²]	各部位表面積
B(i,j) [W]	中央血液溜まりと各 Node との熱交換量
BF(i,j) [mL/s]	血流量
BFB(i,j) [mL/s]	基礎血流量
C(i,j) [kJ/K]	熱容量
Cch [W/]	Head 部位 Core 層からのふるえ制御係数
Cd(i,j) [W/]	隣接する層との間の熱コンダクタンス
Cdl [mL/s]	Head 部位 Core 層からの血管拡張制御係数
Ch(i,j) [W]	ふるえ熱産生量
Chilf(i) [-]	ふるえ熱産生についての各部位 Muscle 層の
	全身に対する分布係数
Cld(i,j) []	皮膚冷受容器からの Cold シグナル
<i>Clds</i> []	皮膚冷受容器からの重み付け出力
Cst [1/]	Head 部位 Core 層からの血管収縮制御係数
<i>Csw</i> [W/]	Head 部位 Core 層からの発汗制御係数
D(i,j) [W]	隣接する層との伝導による熱交換量
DL [mL/s]	血管拡張に関するシグナル

E(i,4) [W]	Skin 層における 蒸発 熱損 失量
$E_{b}(i,4)$ [W]	不感蒸泄による熱損失量
$E_{max}(i)$ [W]	最大蒸発熱損失量
$E_{sw}(i,4)$ [W]	発汗による蒸発熱損失量
<i>Err</i> (<i>i</i> , <i>j</i>) []	エラーシグナル
F(i,j) [/s]	微小温度变化量
$I_{i}(i)$ [clo]	サーマルマネキン測定による各部位別の着衣
cl ⁽¹⁾	執抵抗
L [clo]	標準化した差応執折抗
I_{cls} [CIO]	ルイフ係物
Metf(i) [-]	11手熱産生にしいての合部12 Muscle 層の主
	身に刈りる方仲係数
Mod_{c} [-]	対流熱伝達率の修止係数
Mod_r [-]	線形放射熱伝達率の修正係数
Pch $[W/^2]$	Head 部位 Core 層と各部位 Skin 層からのふる
	え制御係数
$Pdl [mL/s^{2}]$	Head 部位 Core 層と各部位 Skin 層からの血管
	拡張制御係数
<i>Pst</i> $[1/^{2}]$	Head 部位 Core 層と各部位 Skin 層からの血管
$P_{\rm SW}$ [W/ 2]	Head 部位 Core 層と各部位 Skin 層からの発汗
1 SW [W/]	11cad 品位でに自己日間位5km 省方50元/1
	·····································
Q(i,j) [W]	<u> </u>
Q_b [met]	生身の基礎代謝重
$Q_b(i,j)$ [W]	各部位基礎代謝重
Q_{sk} [W/m ²]	全身の皮膚表面からの熱損失量
$Q_{t}(i,4)$ [W]	各部位の皮膚表面と環境の対流および放射熱
	交換量
RATE(i,j) [s]	温度受容器の動的感度
RES(2,1) [W]	呼吸による熱損失(Chest 部位 Core 層で考慮)
RT(i,4) []	イフェクター動作量が2となるための必要温
() / []	度幅
Sch $[W/]$	各部位 Skin 層からのふるえ制御係数
Sdl [mI/s]	各部位 Skin 層からの血管抗張制御係数
SKINC(i) []	
SKINC(I) [-]	
SKINK(l) [-]	反開からのビノリーシグノルを統合するため
SKINS(i) [-]	発汗についての各部位 Skin 層の全身に対す
	る分布係数
SKINV(i) [-]	DL についての各部位 Skin 層の全身に対する
	分布係数
Sst [1/]	各部位 Skin 層からの血管収縮制御係数
Ssw [W/]	各部位 Skin 層からの発汗制御係数
ST [-]	血管収縮に関するシグナル
T(65) []	中央血液溜まりの温度
$T(i i) \begin{bmatrix} 1 \end{bmatrix}$	温度
$T_{(i,j)}[1]$	カットポイント温度及び計算の初期温度
W(i,j) [W/]	小邨仕事に上ス執定生景
vv(i,j) [vv]	
Wrm(i,j) []	皮膚温受容器からのWarmシグナル
Wrm(i,j) [] Wrms []	皮膚温受容器からのWarmシグナル 皮膚温受容器からの重み付け出力
Wrm(i,j) [] Wrms [] $f_{cl}(i)$ [-]	皮膚温受容器からの Warm シグナル 皮膚温受容器からの重み付け出力 着衣面積比
Wrm(i,j) [] Wrms [] f _{cl} (i) [-] f _{cls} [-]	皮膚温受容器からの Warm シグナル 皮膚温受容器からの重み付け出力 着衣面積比 標準化した着衣面積比
$\begin{array}{llllllllllllllllllllllllllllllllllll$	皮膚温受容器からの Warm シグナル 皮膚温受容器からの重み付け出力 着衣面積比 標準化した着衣面積比 対流熱伝達率の測定値
$\begin{array}{cccc} Wrm(i,j) & [&] \\ Wrms & [&] \\ f_{cl}(i) & [-] \\ f_{cls} & [-] \\ h_c & [W/m^2 &] \\ h_c(i) & [W/m^2 &] \end{array}$	皮膚温受容器からの Warm シグナル 皮膚温受容器からの重み付け出力 着衣面積比 標準化した着衣面積比 対流熱伝達率の測定値 対流熱伝達率
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	皮膚温受容器からの Warm シグナル 皮膚温受容器からの重み付け出力 着衣面積比 標準化した着衣面積比 対流熱伝達率の測定値 対流熱伝達率 標準化した対流熱伝達率
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	皮膚温受容器からの Warm シグナル 皮膚温受容器からの重み付け出力 着衣面積比 標準化した着衣面積比 対流熱伝達率の測定値 対流熱伝達率 標準化した対流熱伝達率 皮膚表面から環境までの潜熱伝達率
$ \begin{array}{c} Wrm(i,j) \ [\] \\ Wrms \ [\] \\ f_{cl}(i) \ [-] \\ f_{cs} \ [-] \\ h_c \ [W/m^2 \] \\ h_{ci}(i) \ [W/m^2 \] \\ h_{cs} \ [W/m^2 \] \\ h_{ci}(i) \ [W/m^2 kPa] \\ \end{array} $	皮膚温受容器からのWarm シグナル 皮膚温受容器からの重み付け出力 着衣面積比 標準化した着衣面積比 対流熱伝達率の測定値 対流熱伝達率 標準化した対流熱伝達率 皮膚表面から環境までの潜熱伝達率 標準化した皮膚表面から環境までの潜熱伝達
$ \begin{array}{c} Wrm(i,j) \ [\] \\ Wrms \ [\] \\ f_{cl}(i) \ [-] \\ f_{cls} \ [-] \\ h_c \ [W/m^2 \] \\ h_{cl}(i) \ [W/m^2 \] \\ h_{cs} \ [W/m^2 \] \\ h_{ei}(i) \ [W/m^2 kPa] \\ \end{array} $	皮膚温受容器からのWarmシグナル 皮膚温受容器からの重み付け出力 着衣面積比 標準化した着衣面積比 対流熱伝達率の測定値 対流熱伝達率 標準化した対流熱伝達率 皮膚表面から環境までの潜熱伝達率 標準化した皮膚表面から環境までの潜熱伝達 率
$ \begin{array}{c} Wrm(i,j) \ [\] \\ Wrms \ [\] \\ f_{cl}(i) \ [-] \\ f_{cls} \ [-] \\ h_c \ [W/m^2 \] \\ h_{cl}(i) \ [W/m^2 \] \\ h_{cs} \ [W/m^2 \] \\ h_{es} \ [W/m^2 kPa] \\ h_{es} \ [W/m^2 \] \\ \end{array} $	皮膚温受容器からのWarmシグナル 皮膚温受容器からの重み付け出力 着衣面積比 標準化した着衣面積比 対流熱伝達率の測定値 対流熱伝達率 標準化した対流熱伝達率 皮膚表面から環境までの潜熱伝達率 標準化した皮膚表面から環境までの潜熱伝達 率 線形放射熱伝達率の測定値
$ \begin{array}{c} Wrm(i,j) \ [\] \\ Wrms \ [\] \\ f_{cl}(i) \ [-] \\ f_{cls} \ [-] \\ h_c \ [W/m^2 \] \\ h_{cl}(i) \ [W/m^2 \] \\ h_{cs} \ [W/m^2 \] \\ h_{es} \ [W/m^2 kPa] \\ h_{es} \ [W/m^2 \] \\ h_{cl}(i) \ [W/m^2 \] \\ h_{cl}(j) \ [W/m^2 \] \\ \end{array} $	皮膚温受容器からのWarmシグナル 皮膚温受容器からのWarmシグナル 皮膚温受容器からの重み付け出力 着衣面積比 標準化した着衣面積比 対流熱伝達率の測定値 対流熱伝達率 標準化した対流熱伝達率 皮膚表面から環境までの潜熱伝達率 標準化した皮膚表面から環境までの潜熱伝達 率 線形放射熱伝達率の測定値 線形放射熱伝達率
$ \begin{array}{c} Wrm(i,j) \ [\] \\ Wrms \ [\] \\ f_{cl}(i) \ [-] \\ f_{cs} \ [-] \\ h_c \ [W/m^2 \] \\ h_{cl}(i) \ [W/m^2 \] \\ h_{cs} \ [W/m^2 \] \\ h_{es} \ [W/m^2 kPa] \\ h_{r} \ [W/m^2 \] \\ h_{r}(i) \ [W/m^2 \] \\ h_{r}(W/m^2 \] \\ h_{r}(W/m^2 \] \\ \end{array} $	皮膚温受容器からのWarmシグナル 皮膚温受容器からの重み付け出力 着衣面積比 標準化した着衣面積比 対流熱伝達率の測定値 対流熱伝達率 標準化した対流熱伝達率 皮膚表面から環境までの潜熱伝達率 標準化した皮膚表面から環境までの潜熱伝達 率 線形放射熱伝達率の測定値 線形放射熱伝達率 標準化した線形放射熱伝達率
$Wrm(i,j) [] \\Wrms [] \\f_{cl}(i) [-] \\f_{cls} [-] \\h_{c} [W/m^{2}] \\h_{c}(i) [W/m^{2}] \\h_{cs} [W/m^{2}] \\h_{es} [W/m^{2}kPa] \\h_{es} [W/m^{2}kPa] \\h_{r} [W/m^{2}] \\h_{r}(i) [W/m^{2}] \\h_{rs} [W/$	皮膚温受容器からのWarmシグナル 皮膚温受容器からの重み付け出力 着衣面積比 標準化した着衣面積比 対流熱伝達率の測定値 対流熱伝達率 厚準化した対流熱伝達率 皮膚表面から環境までの潜熱伝達率 標準化した皮膚表面から環境までの潜熱伝達 率 線形放射熱伝達率の測定値 線形放射熱伝達率 標準化した線形放射熱伝達率 標準化した線形放射熱伝達率

達率	
i _{cl} (i) [-] 着衣の透湿係数	
<i>i</i> _{ms} [-] 標準 i _m 係数	
(皮膚表面から環境までの透湿係数)	
<i>km</i> (<i>i</i> ,4) [-] イフェクター動作量	
met [met] 活動の種類より推定される全身の代謝量	
p _{65MNSET*s} [kPa] 65MNSET*[]における飽和水蒸気圧	
$p_a(1)$ [kPa] Head 部位での水蒸気圧	
_{<i>a</i>} (i) [kPa] 環境の水蒸気圧	
p_{sks} [kPa] t_{sk} [kPa] たおける飽和水蒸気圧	
<i>P_{sks}(i)</i> [kPa] 各部位皮膚表面での飽和水蒸気圧	
t _a (1) [] Head 部位での空気温度	
r _a (i) [] 作用温度	
· ・ ・ ・ ・ 「」 各部位皮膚温を面積重み付けした平均皮膚	膏温
ν[m/s] 面積重み付け平均した全身の相対気流速	度
w [-] 全身のぬれ率	
[-] 血液の対向流熱交換効率	
C [J/mLK] 血液の体積比熱(密度と比熱の積)	

【謝辞】

本研究の一部は、日本学術振興会科学研究費(基盤研究(A)(2)、課題番号 12355022、研究代表者 田辺新一)により実施したものである。

【ソフトウェアの公開】

本プログラムのウィンドウズ版ソフトウェアは、下記 web サイトでダウンロー ド可能である。

http://www.tanabe.arch.waseda.ac.jp/model/

【参考文献】

1) P.O.Fanger: Thermal Comfort, Danish Tech. Press, 1970

2) A.P.Gagge, A.P.Fobelets, L.G.Berglund : A Standard Predictive Index of Human Response to the Thermal Environment, ASHRAE Transactions, Vol.92, Part 2, pp.709-731, 1986

3) C.H.Wyndham, A.R.Atkins: An Approach to the Solution of the Human Biothermal Problem with the Aid of an Analogue Computer, Proceedings of the Third International Conference on Medical Electvonics, London, pp.32-38, 1960

4) E.H.Wissler : A Mathematical Model of the Human Thermal System, Bulletin of Mathematical Biophysics, Vol.26, pp.147-166, 1964

5) J.A.J.Stolwijk, J.D.Hardy : Temperature Regulation in Man - A Theoretical Study, Pflugers Arch., Vol.291, No.2, pp.129-162, 1966

6) J.A.J.Stolwijk : Mathematical Model of Thermoregulation, Phisiological and Behavioral Temperature Regulation, Chapter 48, Charles C. Thomas Pub., pp.703-721, 1970 7) J.A.J.Stolwijk: A Mathematical Model of Physiological Temperature Regulation in

Man, NASA, CR-1855, 1971 8) C.E.Smith: A Transient, Three-Dimensional Model of the Human Thermal System,

KSU, Dissertation, 1993

9) 竹森 利和, 中島 健, 庄司 裕子, 平田 耕造, 西村 和久, 道広 和美: 熱環境評価 手法に関する研究 - 人体熱モデルによる皮膚温度予測結果 - , 第17回 人間-生 活環境系シンポジウム報告集, pp.193-196, 1993

10) G.Fu: A Transient, 3-D Mathematical Thermal Model for the Clothed Human, KSU, Dissertation, 1995

11) B.W.Jones: personal communication

12) 川島 美勝 (南雲 仁一編集): 生体システム, 日刊工業新聞社, 1971

13) 横山 真太郎: 生体内熱移動現象, 北海道大学図書刊行会, 1993

14) 田辺新一,長谷部ヤエ:皮膚温度可変型サーマルマネキンによる室内環境 評価法に関する研究,日本建築学会計画系論文報告集,第448号,pp.1-8,1993.6 15) T.Oohori, L.G.Berglund, A.P.Gagge: Comparison of Current Two-Parameter Indices of Vapor Permeation of Clothing - As Factors Governing Thermal Equilibrium and Human Comfort, ASHRAE Transactions, Vol.90, Part 2, pp.85-101, 1985

16) 市原 真希, 斎藤 正文, 西村 美加, 田辺 新一: サーマルマネキンを用いた立 位・座位人体各部位の放射・対流熱伝達率の測定,日本建築学会計画系論文集, 第 501 号, pp.45-51, 1997.11

17) 田村照子:裸体健常成人女子の皮膚温分布,お茶の水医学雑誌,第31巻,第 4号, pp.225-241, 1983