Benchmark platforms on noise barriers

Noise propagation from road traffic or railways

Traditional: energy-based prediction

Recently: wave-based numerical prediction

- "Edge-modified" barriers
- Complicated terrain

Fundamental of prediction

Diffraction by noise barriers

Simple barrier problem (A1-3F)

Insertion Loss (IL) = SPL_{NoBarrier} – SPL_{WithBarrier}

Task A: IL <u>spatial</u> distribution along R1 Task B: IL <u>frequency</u> characteristics on R2-R4

Intentions:

- Very simple so that various solutions are expected.
- Thickness effect 1: non-uniqueness arises in BEMs.
- Thickness effect 2: barrier efficiency increases.

Rounded-edge barrier problem (A1-4F & A1-5F)

Intentions:

- Non-uniqueness shifts into lower frequency range.
- Non-uniqueness still remains even if absorbing (A1-5F).
- Application to design of "edge-modified" barriers.

Kobayasi Institute of Physical Research

Method		Abbrev.	A1-3F		A1-4F		A1-5F	
			А	В	А	В	A	В
Analytical solution		AN						
BEM	Basic Form	BF						
	BF with absorbing hollow	BF-AH						
	Burton & Miller method	B&M						
	Normal Derivative Form for rigid thin plate	NDF-T						
	SYSNOISE Direct with CHIEF	SN-DC						
	SYSNOISE Indirect	SN-ID						
FDTD-PE coupling		FD-PE						

Benchmarks allow 3-D analyses, but all contributions are in 2-D.

FD-PE interference pattern shifts toward ground (probably caused by phase velocity error).

Simple barrier: IL frequency characteristics

A1-3F-B: At receiver R3 (20 m)

BF suffers from non-uniqueness at high frequencies. The other BEMs overcome non-uniqueness successfully.

Simple barrier: IL frequency characteristics

A1-3F-B: At receiver R3 (20 m)

SN-ID avoids non-uniqueness.FD-PE deviates largely in low frequency range.AN neglects the barrier-height interference.

Simple barrier: IL frequency characteristics

<u>A1-3F-B</u>: At receiver R2 (5 m)

"Zero-thickness" approximation should be applied carefully.

1.5 dB at R3 (20 m); diffraction-angle dependent

A1-5F-B: At receiver R3 (20 m)

Non-uniqueness problem in BEMs

- Independent of boundary absorption.
- Arises in low frequency range by large inner volume.

Factors of method selection: memory requirement

- Noise barriers in 2-D problem
- FDTD (3 REAL arrays) vs. BEM (1 COMPLEX array)
- Same size of grid and element, same precision of variables

Factors of method selection: various BEMs

	Required	To avoid non-uniqueness			
	(DOF = N)	Assurance	Implementation		
Basic Form (BF), SYSNOISE Direct	O(N ²)	No			
BF with CHIEF, SYSNOISE Direct with CHIEF	O(N(N+N _c))	Scheme- dependent	Easy		
BF with absorbing hollow	O(4N ²)	Always	Very easy		
Normal Derivative Form (NDF)	O(N ²)	No	(Singular integral)		
NDF for rigid thin plate, SYSNOISE Indirect	O(N ² /4)	Always	Rigid boundary, singular integral		
Burton & Miller method (BF-NDF coupling)	O(N ²)	Always	Singular integral, coupling factor		

A series of benchmark platforms is established for exterior problems; basic shapes (cubes, spheres, flat panels) and practical shapes (diffusers, loudspeakers, noise barriers).

It is expected that accuracy and computational cost of each numerical method would be discussed by comparison in common benchmark platforms.

Results in this presentation are available in AIJ-BPCA website.