日本建築学会荷重運営委員会信頼性工学利用小委員会・公開小委員会 「建築物に関する不確実さの取り扱いと対処技術の最新動向」

各国の構造設計における不確実さの取り扱い (荷重耐力係数の比較を通じて)

Kazuyoshi Nishijima, Disaster Prevention Research Institute Kyoto University nishijima.kazuyoshi.5x@kyoto-u.ac.jp

Today's talk

- 1. Comparison of design codes for structures in selected revision and countries
 - Europe (EUROCODE)
 - USA (ASCE 7-10)
 - Canada (CSA)
 - Australia (AS)
- 2. Benefits and motivation to introduce more numbers of partial factors:

Discussion-based

- Through examples in two industries:
 - (1) Electricity
 - (2) Wind energy
- Robustness, target reliability and partial factors

1. Comparison of design codes for structures

1. Limit states, design situations, values for loads (actions), load factors and load combinations for ordinal structures

	Eurocode EN 1990	ASCE Standard 7-10	CSA	Australian code
Limit state	■ Ultimate limit state (ULS) ■ Serviceability limit state (SLS)	Strength limit state Serviceability limit state	■ Ultimate limit state (ULS) ■ Fatigue limit state (FLS)	
Design situation	 ■ Persistent situation ■ Transient situation ■ Accidental situation ■ Seismic design situations 		■ Serviceability limit state (SLS)	
Classification of actions (loads)	■ Permanent action, G ■ Variable action, Q ■ Accidental action, A	■ Permanent load ■ Variable load	 ■ Permanent load, G ■ Variable load, Q ■ Rare loads, E 	■ Permanent action ■ Imposed action ■ Wind, snow and ice & earthquake action
Values of actions (loads)	 For permanent action Characteristic value, G_k For variable action Characteristic value, Q_k Combination value, Ψ₀Q_k 	■ Nominal load, Q_n	■ Specified loads - For permanent load the mean value - For variable action R≥50 years (or P _{AE} ≤0.02) - For rare load R≈2500 years (or P _{AE} ≈0.0004)	Annual probability of exceedance Importance Wind Snow Earth-quake
	 Frequent value, Ψ₁Q_k Quasi-permanent value, Ψ₂Q_k For accidental action Characteristic value, A_k 		R : return period P_{AE} : annual exceedance probability	1 1:100 1:200 1:100 1:250 2 1:500 1:500 1:150 1:500 3 1:1000 1:1000 1:200 1:1000 4 1:2000 1:2000 1:250 1:1500
Partial factors for actions (load factors)	■ Partial factors for actions, γ_f	■ Load factor, γ	■ Load factor, α	■ None
Design value of action (factored load)	■ Design value ($F_d = \gamma_f F_r$)	■ Factored load, γQ _n	■ Factored load	■ Design value of action
Combination of actions (load combinations)	■ For example Varied by limit state and design situation (for example) $\sum_{j\geq 1} \gamma_{G,j} G_{k,j} + \gamma_P P + \gamma_{Q,1} Q_{k,1} + \sum_{i\geq 1} \gamma_{Q,i} \Psi_{0,i} G_{k,i}$	■ Load Combination $\sum_{i} \gamma_{i}(Q_{n})_{i}$	■ Basic Combination $\sum \alpha_{G_i} G_i + \alpha_{\mathcal{Q}_j} Q_j + \sum_{k \neq j} \alpha_{C_{jk}} Q_k$ ■ Rare Load Combination $\sum G_i + E + \sum_{k \neq j} \alpha_{C_{gk}} Q_k$ $\alpha_{\mathcal{Q}_j} : \text{Principal load factor}$ $\alpha_{C_{jk}} : \text{Companion load factor}$	

Prepared by Lee Seung Han

2. Target reliability for ordinal structures

	Eurocode EN 1990	ASCE Standard 7-10	CSA	Australian code
	■ Minimum values for reliability index β (ULS)	 Acceptable reliability (maximum annual probability of failure) associated reliability indexes for load conditions that do not 		 Annual structural reliability indices (β) for structural components and connections
	Reliability reference periods Class 1 year 50 years RC3 5.2 4.3 RC2 4.7 3.8 RC1 4.2 3.3 Target reliability index β for Class RC2 structural members Limit state reference periods	Risk Category	Not serious 2.5 3.0	Importance Level Permanent & Wind, imposed actions Wind, earthquake & snow actions 1 3.2 2 3.8 3 3.6 4 3.8
Target Reliability	USL 4.7 3.8 Fatigue 1.5-3.8 SLS (irreversible) 2.9 1.5 I year 50 years to widespread progression of damage b3: failure that is sudden and results widespread progression of damage anticipated reliability (maximum probability of failure) for earthquake	- b3: failure that is sudden and results in widespread progression of damage ■ anticipated reliability (maximum probability of failure) for earthquake	Serious (normal buildings) 3.5 4.0 Very serious 4.0 4.5 ■ CSA S408-81 : β=3.5 for brittle failures with a ??-year design life	
		f2 25% 15% 10% - f1: total or partial structural collapse - f2: failure that could result in endangerment of individual lives	■ Bartlett (2007): β=4.0 for brittle failure of concrete element with a ??-year design life ■ CISC 2010: β=4.5 for fracture of steel on net section with a ??-year design life	
Factor for importance of	■ K _{FI} factor for actions,		■ Importance factor, I	
structure (reliability modification)	Reliability Class RC1 RC2 RC3 K _{FI} 0.9 1.0 1.1	a factor relating to ductility, redundancy, and operational importance		

Prepared by Lee Seung Han

2. Benefits and motivation to introduce more numbers of partial factors

(1) Electricity industry

- Necessity to develop codes consistent with international tread
 Note: international trend = reliability-based design
 e.g. IEC60826 Design criteria of overhead transmission lines
- Safety checking format (石川(2009))

$$\phi R_n \ge \gamma_W W_n + \gamma_D D_n$$

 Safety checking format considering response modeling uncertainty

$$\phi R_n \ge \gamma_W \eta_W W_n + \gamma_D D_n$$

 R_n : Nominal resistance

 W_n : Wind-induced response

 D_n : Response under no wind

 $|\phi|$: Resistance factor

 γ_{w} : Load factor (wind)

 γ_D : Load factor (others)

 η_{W} : Modeling uncertainty

石川智巳, 送電用鉄塔の耐風信頼性設計法に関する検討(その2)— 風向特性を考重した荷重・耐力係数法に基づく設計式の提案—,電中研報告.2009.7

電力中央研究所, http://criepi.denken.or.jp/jp/env/outline/2007/64.pdf

(2) Wind energy

• IEC61400-1 (Wind turbines - Part 1: Design requirements)

e.g. blade corrosion failure:

$$R_c \ge \gamma_n \gamma_m \gamma_f S_c$$

$$\begin{split} M &= X_{capacity} R - X_{demand} S \\ X_{demand} &= X_{\exp} X_{st} X_{aero} X_{str} X_{sim} X_{ext} \end{split}$$

 R_c : characteristic capacity (clearance)

 S_{c} : characteristic demand (deflection)

 γ_n : partial safety factor accounting for consequence of failure

 γ_m : partial safety factor accounting for material uncertainty

 γ_f : partial safety factor accounting for load uncertainty

Robustness, target reliability and partial factors

- Structural elements to structure
 - ASCE 7-10 (brittle, progressiveness)
- Structure to society and economy
 - Consequence class (ISO2394)
 - Risk Category (ASCE 7-10)

Discussion

- Why more number of partial factors?
- Different nature of different hazards; how to differentiate in reliability-based design formats?
 - Need to consider different affected sizes by different hazards for some load combinations?