日本建築学会荷重運営委員会信頼性工学利用小委員会・公開小委員会 「建築物に関する不確実さの取り扱いと対処技術の最新動向」 # 各国の構造設計における不確実さの取り扱い (荷重耐力係数の比較を通じて) Kazuyoshi Nishijima, Disaster Prevention Research Institute Kyoto University nishijima.kazuyoshi.5x@kyoto-u.ac.jp ## Today's talk - 1. Comparison of design codes for structures in selected revision and countries - Europe (EUROCODE) - USA (ASCE 7-10) - Canada (CSA) - Australia (AS) - 2. Benefits and motivation to introduce more numbers of partial factors: ### **Discussion-based** - Through examples in two industries: - (1) Electricity - (2) Wind energy - Robustness, target reliability and partial factors 1. Comparison of design codes for structures #### 1. Limit states, design situations, values for loads (actions), load factors and load combinations for ordinal structures | | Eurocode EN 1990 | ASCE Standard 7-10 | CSA | Australian code | |---|--|---|--|--| | Limit
state | ■ Ultimate limit state (ULS) ■ Serviceability limit state (SLS) | Strength limit state Serviceability limit state | ■ Ultimate limit state (ULS) ■ Fatigue limit state (FLS) | | | Design
situation | ■ Persistent situation ■ Transient situation ■ Accidental situation ■ Seismic design situations | | ■ Serviceability limit state (SLS) | | | Classification
of actions (loads) | ■ Permanent action, G ■ Variable action, Q ■ Accidental action, A | ■ Permanent load
■ Variable load | ■ Permanent load, G ■ Variable load, Q ■ Rare loads, E | ■ Permanent action ■ Imposed action ■ Wind, snow and ice & earthquake action | | Values of actions (loads) | For permanent action Characteristic value, G_k For variable action Characteristic value, Q_k Combination value, Ψ₀Q_k | ■ Nominal load, Q_n | ■ Specified loads - For permanent load the mean value - For variable action R≥50 years (or P _{AE} ≤0.02) - For rare load R≈2500 years (or P _{AE} ≈0.0004) | Annual probability of exceedance Importance Wind Snow Earth-quake | | | Frequent value, Ψ₁Q_k Quasi-permanent value, Ψ₂Q_k For accidental action Characteristic value, A_k | | R : return period P_{AE} : annual exceedance probability | 1 1:100 1:200 1:100 1:250
2 1:500 1:500 1:150 1:500
3 1:1000 1:1000 1:200 1:1000
4 1:2000 1:2000 1:250 1:1500 | | Partial factors
for actions
(load factors) | ■ Partial factors for actions, γ_f | ■ Load factor, γ | ■ Load factor, α | ■ None | | Design value
of action
(factored load) | ■ Design value ($F_d = \gamma_f F_r$) | ■ Factored load, γQ _n | ■ Factored load | ■ Design value of action | | Combination
of actions
(load
combinations) | ■ For example Varied by limit state and design situation (for example) $\sum_{j\geq 1} \gamma_{G,j} G_{k,j} + \gamma_P P + \gamma_{Q,1} Q_{k,1} + \sum_{i\geq 1} \gamma_{Q,i} \Psi_{0,i} G_{k,i}$ | ■ Load Combination $\sum_{i} \gamma_{i}(Q_{n})_{i}$ | ■ Basic Combination $\sum \alpha_{G_i} G_i + \alpha_{\mathcal{Q}_j} Q_j + \sum_{k \neq j} \alpha_{C_{jk}} Q_k$ ■ Rare Load Combination $\sum G_i + E + \sum_{k \neq j} \alpha_{C_{gk}} Q_k$ $\alpha_{\mathcal{Q}_j} : \text{Principal load factor}$ $\alpha_{C_{jk}} : \text{Companion load factor}$ | | Prepared by Lee Seung Han #### 2. Target reliability for ordinal structures | | Eurocode EN 1990 | ASCE Standard 7-10 | CSA | Australian code | |--|---|---|---|--| | | ■ Minimum values for reliability index β
(ULS) | Acceptable reliability (maximum annual
probability of failure) associated reliability
indexes for load conditions that do not | | Annual structural reliability indices (β)
for structural components and connections | | | Reliability reference periods Class 1 year 50 years RC3 5.2 4.3 RC2 4.7 3.8 RC1 4.2 3.3 Target reliability index β for Class RC2 structural members Limit state reference periods | Risk Category | Not serious 2.5 3.0 | Importance Level Permanent & Wind, imposed actions Wind, earthquake & snow actions 1 3.2 2 3.8 3 3.6 4 3.8 | | Target
Reliability | USL 4.7 3.8 Fatigue 1.5-3.8 SLS (irreversible) 2.9 1.5 I year 50 years to widespread progression of damage b3: failure that is sudden and results widespread progression of damage anticipated reliability (maximum probability of failure) for earthquake | - b3: failure that is sudden and results in
widespread progression of damage
■ anticipated reliability (maximum
probability of failure) for earthquake | Serious (normal buildings) 3.5 4.0 Very serious 4.0 4.5 ■ CSA S408-81 : β=3.5 for brittle failures with a ??-year design life | | | | | f2 25% 15% 10% - f1: total or partial structural collapse - f2: failure that could result in endangerment of individual lives | ■ Bartlett (2007): β=4.0 for brittle failure of concrete element with a ??-year design life ■ CISC 2010: β=4.5 for fracture of steel on net section with a ??-year design life | | | Factor for importance of | ■ K _{FI} factor for actions, | | ■ Importance factor, I | | | structure
(reliability
modification) | Reliability Class RC1 RC2 RC3 K _{FI} 0.9 1.0 1.1 | a factor relating to ductility,
redundancy, and operational
importance | | | ### Prepared by Lee Seung Han 2. Benefits and motivation to introduce more numbers of partial factors ## (1) Electricity industry - Necessity to develop codes consistent with international tread Note: international trend = reliability-based design e.g. IEC60826 Design criteria of overhead transmission lines - Safety checking format (石川(2009)) $$\phi R_n \ge \gamma_W W_n + \gamma_D D_n$$ Safety checking format considering response modeling uncertainty $$\phi R_n \ge \gamma_W \eta_W W_n + \gamma_D D_n$$ R_n : Nominal resistance W_n : Wind-induced response D_n : Response under no wind $|\phi|$: Resistance factor γ_{w} : Load factor (wind) γ_D : Load factor (others) η_{W} : Modeling uncertainty 石川智巳, 送電用鉄塔の耐風信頼性設計法に関する検討(その2)— 風向特性を考重した荷重・耐力係数法に基づく設計式の提案—,電中研報告.2009.7 電力中央研究所, http://criepi.denken.or.jp/jp/env/outline/2007/64.pdf ## (2) Wind energy • IEC61400-1 (Wind turbines - Part 1: Design requirements) e.g. blade corrosion failure: $$R_c \ge \gamma_n \gamma_m \gamma_f S_c$$ $$\begin{split} M &= X_{capacity} R - X_{demand} S \\ X_{demand} &= X_{\exp} X_{st} X_{aero} X_{str} X_{sim} X_{ext} \end{split}$$ R_c : characteristic capacity (clearance) S_{c} : characteristic demand (deflection) γ_n : partial safety factor accounting for consequence of failure γ_m : partial safety factor accounting for material uncertainty γ_f : partial safety factor accounting for load uncertainty ## Robustness, target reliability and partial factors - Structural elements to structure - ASCE 7-10 (brittle, progressiveness) - Structure to society and economy - Consequence class (ISO2394) - Risk Category (ASCE 7-10) ### **Discussion** - Why more number of partial factors? - Different nature of different hazards; how to differentiate in reliability-based design formats? - Need to consider different affected sizes by different hazards for some load combinations?