材料施工委員会 RILEM 小委員会 RILEM ニュース

RILEM 概要紹介

1. はじめに

より良い建築物を造るためには、構造物の性能を知り、そこに使われる建設材料の物性を理解することが必要です。21世紀の国際社会を迎え、建築に関わる活動領域も国外に広がってゆきます。必然的に、世界各地の様々な環境下における材料性能を適切に把握し、評価することが重要になります。これは諸外国においても同様の課題であり、建築物における世界共通のこの目的を、学術レベルで world-wide に達成するべく設立された組織が「RILEM」です。RILEM の活動は、将来の建築物のあり方を示唆する貴重な情報を満載しており、これらは本会会員にとっても非常に有用なものであると考えます。

そこで,本会 RILEM 小委員会(主査:田村 博・(財) 日本建築総合試験所)では,その活動の一環として, RILEM の概要について,複数回にわたりご紹介します。 2. RILEM

RILEM は 1947 年に設立された組織で,正式名称を

Réunion Internationale des Laboratoires d'Essais et de Recherche sur les Matériaux et les Constructions', 日本語表記で"国際材料構造試験研究機関連合"といい,現在,約80カ国1000名以上の人種も国籍も様々な会員で構成されています(組織:図1)。日本では独立行政法人建築研究所(理事長:山内泰之)が代表(National delegate)となっており,2001年度時点での会員数は,個人61名,法人10で,会員各国中5番目となっています(図2参照)。また,2004年9月には,RILEM総会が日本(郡山)で開催される予定となっています。

3. RILEM TC について

RILEM の活動の中枢は,図1の4つの群(cluster)における30以上の技術委員会(Technical Committee:以下,TC)にあります(表1)。既に活動を終えたTCの成果物は,報告書の形で,RILEMのホームページを通して購入することができます。参考までに現時点での出版物を表2に示します。表1に示しますように,これらのTCには日本からも多数の研究者が参加しています。本誌では,これらTCを含めたRILEMの活動概要について,順次,具体的にかつ分かりやすく紹介してゆきますのでご期待下さい。

・RILEM ホームページアドレス:

http://www.rilem.ens-cachan.fr/index.html

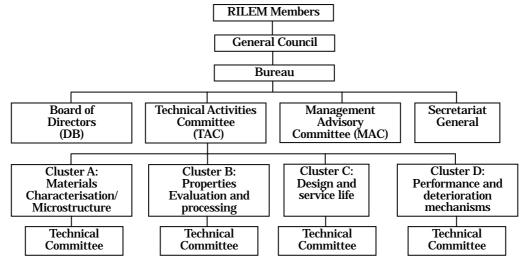


図1 RILEM 組織図

フランス 11% ドイツ 10% アメリカ 8% イギリス 8% 日本 7%

図2 主要各国の会員割合(2001年度)

表 2 現在出版中の RILEM TC Reports

TC Code	TC の名称	価格*
		(FRF)
139-DBS	Durability of Building Sealants	646
160-MLN	Considerations for Use in Managing the Aging	512
	of Nuclear Power Plant Concrete Structures	
159-ETC,163-TPZ	Engineering and Transport Properties of the	620
	Interfacial Transition Zone in Cementitious	
	Composites	
165-SRM	Sustainable Raw Materials - Construction and	380
	Demolition Waste	
174-SCC	Self-Compacting Concrete	315

*2001.11.5 時点:1FRF=16.8 円

表 1 現在活動中の RILEM TC

TC Code	TC の名称	日本からの
(設立順)		参加の有無
167-COM	Characterization of old mortars with respect to their repair	×
168-MMM	Computer modeling of mechanical behavior of masonry structures	×
169-MTE	Test methods for load transferring metalwork used in timber engineering	×
170-CSH	The structure of C-S-H	×
176-IDC	Internal damage of concrete due to frost action	
177-MDT	Masonry durability and on-site testing	×
178-TMC	Testing and modeling chloride penetration in concrete	×
179-CSD	Data bank of concrete creep and shrinkage	
180-QIC	Qualitative identification of clinker and cement	×
181-EAS	Early shrinkage induced stresses and cracking in cementitious systems	
182-PEB	Performance testing and evaluation of bituminous materials	×
183-MIB	Microbial impacts on building materials - Weathering and conservation	×
184-IFE	Industrial floors for withstanding harsh environmental attacks, including repair	
	and maintenance.	
185-ATC	Advanced testing of cement based materials during setting and hardening	
ARP	Alkali-reactivity and prevention - Assessment, specification and diagnosis of	
	alkali-reactivity	
CSC	Casting of self-compacting concrete	×
ECM	Environment-Conscious Construction Materials and Systems	(Chairman)
FHP	Predicting the frost resistance of high-performance concrete structures	×
	exposed to numerous freezing and thawing cycles	
HFC	Hybrid fibre concrete	×
HTC	Mechanical Concrete Properties at High Temperature - Modeling and Applications	×
ISA	Internal sulfate attack	×
LTP	Life time performance of materials and structures	×
MCW	Modelling of crack initiation and propagation in wood under varying ambient conditions	×
NDE	Non-destructive evaluation of concrete structures	×
NEC	Non-destructive evaluation of the 'covercrete' (concrete cover)	×
QFS	Size effect and scaling of quasibrittle fracture	
SOC	Experimental determination of the stress-crack opening curve for concrete in tension	
SBJ	Service life prediction of sealed building and construction joints	
RLS	Bonded cement-based material overlays for the repair, the lining or the	×
	strengthening of slabs or pavements	
TDP	Application of Titanium Dioxyde Photocatalysis to Construction Materials	(Chairman)
URM	Used of recycled materials in constructions	
175-SLM/CIB W80	Computer bases on service life methodology	