確認問題 B-31

残響時間が0.5秒程度の室で音声伝達性能を調べるためにSTIの計測を試みた。
受音点における(暗騒音を含む)音声レベル,暗騒音レベル,インパルス応答が以下の場合,STIを算出せよ。

レベル測定結果

周波数 (Hz) 125 250 500 1k 2k 4k 8k
音声レベル (dB)(暗騒音含む) 67 67 64 58 52 46 40
暗騒音レベル (dB) 48 40 34 30 27 25 23

インパルス応答

b31.wav (RIFF waveform, 16 bit signed integer, モノラル, サンプリング周波数: 48000 Hz)
b31.fb (Float Binary (little endian), データ数 288000,モノラル,サンプリング周波数: 48000 Hz)
b31_wf

Note

 この応答はホワイトノイズを基に加工し,ファイルの先頭に直接音を加えたものである。残響時間が0.5秒程度になるように時間的に指数減衰させている。インパルス応答をフィルタリングするときに,直接音がデータの後ろに回り込まないように注意しよう。また TI が 0 から 1 の間の値になるように注意しよう。

STI

STI
Hoshi 0.902
Nishikawa 0.902
Okubo 0.902


算出プロセス(IEC 60268-16:2020 に準拠)

Step 変調
周波数
$f_m$ (Hz)
周波数 $f_k$ (Hz) 備考
125 250 500 1000 2000 4000 8000
1 暗騒音を含んだ信号レベル $L_k$ [dB] 67 67 64 58 52 46 40 現場で,スピーカからTable A.4にある男性音声の特性を持つノイズを再生し,受音点でオクターブバンドごとに音圧レベル $\small{L_k}$ を計測し,右に記入する。
2 暗騒音レベル $L_{N,k}$ [dB] 48 40 34 30 27 25 23 現場で受音点の暗騒音レベルを計測し,右に記入する。
3 インパルス応答から計算したMTF $m_{k,\,f_m}$ 0.63 0.997 69 0.996 51 0.997 12 0.997 02 0.997 30 0.997 17 0.994 28 インパルス応答 $\small{h(t)}$ からオクターブバンドに帯域制限した $\small{h_k(t)}$ を求め,$\small{h_k(t)}$ と変調周波数 $\small{f_m}$ からMTFを求める。 \[ m_{k,\,f_m} = \frac{\left| \int \limits^{\infty}_{0} h^\textsf{2}_k (t)\,\exp (-j\textsf{2} \pi f_m t)\,\textsf{d}t \right|}{\int\limits^{\infty}_{\textsf{0}}h^\textsf{2}_k (t)\,\textsf{d}t} \]
0.8 0.996 31 0.994 44 0.995 40 0.995 26 0.995 69 0.995 49 0.990 88
1 0.994 32 0.991 44 0.992 94 0.992 71 0.993 39 0.993 07 0.985 99
1.25 0.991 34 0.986 94 0.989 25 0.988 90 0.989 94 0.989 45 0.978 65
1.6 0.986 38 0.979 45 0.983 15 0.982 61 0.984 25 0.983 49 0.966 50
2 0.979 83 0.969 66 0.975 24 0.974 43 0.976 88 0.975 75 0.950 66
2.5 0.970 78 0.956 39 0.964 61 0.963 46 0.967 01 0.965 36 0.929 27
3.15 0.958 28 0.938 96 0.950 71 0.949 20 0.954 16 0.951 77 0.901 09
4 0.941 77 0.918 28 0.933 92 0.932 52 0.938 89 0.935 40 0.866 92
5 0.923 57 0.899 27 0.917 20 0.917 52 0.924 39 0.919 53 0.833 30
5.3 0.903 34 0.884 22 0.900 28 0.905 59 0.911 23 0.905 03 0.800 53
8 0.882 69 0.878 28 0.885 35 0.898 58 0.901 35 0.895 21 0.773 08
10 0.868 97 0.877 88 0.877 15 0.895 38 0.897 01 0.891 48 0.759 21
12.5 0.868 75 0.866 70 0.878 97 0.894 79 0.900 34 0.890 17 0.758 89
4 信号レベル $L_{S,k}$ [dB] 66.944 98 66.991 33 63.995 65 57.993 11 51.986 24 45.965 37 39.912 47 $\small{L_k}$ と $\small{L_{N,k}}$ から $\small{L_{S,k}}$ を求める。 \[ L_{S,k} = \textsf{10} \log _{\textsf{10}}\left[\textsf{10}^{(L_{k}/\textsf{10})}- \textsf{10}^{(L_{N,k}/\textsf{10})}\right] \]
5 信号のSN比 $\rho_k$ [dB] 18.944 98 26.991 33 29.995 65 27.993 11 24.986 24 20.965 37 16.912 47 \[ \rho_k = L_{S,k} - L_{N,k} \]
6 暗騒音の影響 0.987 41 0.998 00 0.999 00 0.998 42 0.996 84 0.992 06 0.980 05 \[ \left[ \textsf{1}+\textsf{10}^{-\rho_k /\textsf{10}} \right]^{-\textsf{1}} = \frac{I_{S,k}}{I_{S,k}+I_{N,k}} = \frac{I_{S,k}}{I_{k}} \]
7 暗騒音の影響を含んだMTF $m^{\prime}_{k,\,f_m}$ 0.63 0.985 13 0.994 52 0.996 12 0.995 44 0.994 14 0.989 25 0.974 44 \begin{align*} m^{\prime}_{k,\,f_m} &= m_{k,\,f_m} \cdot\left[ \textsf{1}+\textsf{10}^{-\rho_k /\textsf{10}} \right]^{-\textsf{1}} \\ &= m_{k,\,f_m} \times \frac{I_{S,k}}{I_{S,k}+I_{N,k}} \end{align*}
0.8 0.983 77 0.992 45 0.994 41 0.993 68 0.992 55 0.987 58 0.971 11
1 0.981 81 0.989 46 0.991 94 0.991 14 0.990 25 0.985 18 0.966 31
1.25 0.978 86 0.984 97 0.988 26 0.987 34 0.986 81 0.981 59 0.959 12
1.6 0.973 96 0.977 50 0.982 17 0.981 05 0.981 14 0.975 67 0.947 21
2 0.967 50 0.967 72 0.974 27 0.972 89 0.973 79 0.968 00 0.931 69
2.5 0.958 56 0.954 48 0.963 65 0.961 93 0.963 95 0.957 69 0.910 73
3.15 0.946 22 0.937 09 0.949 76 0.947 70 0.951 14 0.944 21 0.883 11
4 0.929 91 0.916 45 0.932 99 0.931 05 0.935 92 0.927 97 0.849 63
5 0.911 95 0.897 48 0.916 29 0.916 06 0.921 47 0.912 22 0.816 67
5.3 0.891 97 0.882 46 0.899 38 0.904 15 0.908 35 0.897 84 0.784 55
8 0.871 58 0.876 53 0.884 46 0.897 16 0.898 50 0.888 10 0.757 65
10 0.858 03 0.876 13 0.876 28 0.893 97 0.894 18 0.884 40 0.744 06
12.5 0.857 82 0.864 97 0.878 09 0.893 38 0.897 49 0.883 10 0.743 74
8 暗騒音を含んだ信号の強度 $I_k$ 5 011 872 5 011 872 2 511 886 630 957 158 489 39 811 10 000 \[ I_k = \textsf{10}^{(L_k/\textsf{10})} \]
9 マスキングレベル $L_{a,k}$ [dB] - -26.3 -26.3 -31.7 -36 -39 -42 Table A.3 より演算する。125 Hzは算出しない。
10 マスキングの強度 $a_k$ - 0.002 34 0.002 34 0.000 68 0.000 25 0.000 13 0.000 06 125 Hzは算出しない。 \[ a_{k} = \textsf{10}^{(L_{a,k}/\textsf{10})} \]
11 マスキングを考慮した音声の強度 $I_{am,k}$ 0 11748.976 11748.976 1698.2437 158.48932 19.953 2.5119 125 Hzは 0 とする。 \[ I_{am,k} = a_k \times I_{k-\textsf{1}} \]
最小可聴値 $A_k$ [dB] 46 27 12 6.5 7.5 8 12 Table A.2で与えられている値を用いる。
12 最小可聴値の強度 $I_{\textsf{rt},k}$ 39810.72 501.19 15.85 4.47 5.62 6.31 15.85 \[ I_{\textsf{rt},k} = \textsf{10}^{(A_k/\textsf{10})} \]
13 聴覚マスキングの影響 $C_k$ 0.992 12 0.997 56 0.995 34 0.997 31 0.998 97 0.999 34 0.998 17 \[ C_k = \frac{I_k}{I_k+I_{am,k}+I_{\textsf{rt},k}} \]
14 マスキングを考慮したMTF $m^{\prime\prime}_{k,\,f_m}$ 0.63 0.977 36 0.992 10 0.991 47 0.992 76 0.993 12 0.988 59 0.972 65 \[ m^{\prime\prime}_{k,\,f_m} = m^{\prime}_{k,\,f_m} \times C_k \]
0.8 0.976 01 0.990 03 0.989 77 0.991 00 0.991 52 0.986 93 0.969 33
1 0.974 07 0.987 05 0.987 32 0.988 47 0.989 22 0.984 53 0.964 54
1.25 0.971 15 0.982 57 0.983 65 0.984 68 0.985 79 0.980 95 0.957 37
1.6 0.966 28 0.975 11 0.977 59 0.978 41 0.980 12 0.975 03 0.945 48
2 0.959 87 0.965 36 0.969 72 0.970 27 0.972 78 0.967 36 0.929 98
2.5 0.951 01 0.952 15 0.959 16 0.959 34 0.962 95 0.957 06 0.909 06
3.15 0.938 76 0.934 80 0.945 33 0.945 15 0.950 16 0.943 58 0.881 49
4 0.922 58 0.914 21 0.928 64 0.928 54 0.934 95 0.927 36 0.848 07
5 0.904 76 0.895 29 0.912 01 0.913 60 0.920 52 0.911 62 0.815 18
5.3 0.884 94 0.880 30 0.895 19 0.901 72 0.907 41 0.897 25 0.783 12
8 0.864 71 0.874 39 0.880 34 0.894 75 0.897 57 0.887 52 0.756 27
10 0.851 27 0.874 00 0.872 19 0.891 56 0.893 25 0.883 82 0.742 70
12.5 0.851 06 0.862 86 0.874 00 0.890 97 0.896 56 0.882 52 0.742 38
15 等価SN比に換算 $\rho_{\textsf{eff}_ {k,\,f_m}}$ [dB] 0.63 15.000 00 15.000 00 15.000 00 15.000 00 15.000 00 15.000 00 15.000 00 -15 ≤ $\small{\rho_{\textsf{eff}_{k,\,f_m}}}$ ≤ +15 に収める。 \[ \rho_{\textbf{eff}\,_{k,\,f_m}}=\textsf{10} \log_{\textsf{10}}\left( \frac{m^{\prime\prime}_{k,\,f_m}}{\textsf{1}-m^{\prime\prime}_{k,\,f_m}} \right) \]
0.8 15.000 00 15.000 00 15.000 00 15.000 00 15.000 00 15.000 00 14.997 46
1 15.000 00 15.000 00 15.000 00 15.000 00 15.000 00 15.000 00 14.346 15
1.25 15.000 00 15.000 00 15.000 00 15.000 00 15.000 00 15.000 00 13.513 26
1.6 14.572 51 15.000 00 15.000 00 15.000 00 15.000 00 15.000 00 12.390 64
2 13.787 67 14.451 47 15.000 00 15.000 00 15.000 00 14.718 26 11.232 71
2.5 12.880 61 12.988 70 13.707 75 13.728 40 14.148 48 13.480 85 9.998 27
3.15 11.855 11 11.564 84 12.378 57 12.363 02 12.801 94 12.233 84 8.714 68
4 10.761 77 10.276 14 11.143 71 11.137 34 11.575 44 11.060 71 7.467 84
5 9.777 06 9.319 86 10.155 87 10.242 19 10.637 64 10.134 78 6.444 93
5.3 8.859 96 8.665 56 9.315 06 9.625 94 9.912 21 9.411 14 5.576 00
8 8.056 19 8.426 93 8.667 04 9.294 61 9.426 24 8.970 85 4.917 57
10 7.576 79 8.411 26 8.340 49 9.149 58 9.226 11 8.812 22 4.603 67
12.5 7.569 37 7.987 80 8.411 36 9.123 26 9.379 04 8.757 54 4.596 51
16 $TI$ を算出 $TI_{k,\,f_m}$ 0.63 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 0 ≤ TI ≤ +1 であることを確認する \[ TI_{k,\,f_m} = \frac{\rho_{\textbf{eff}\,_{k,\,f_m}}+\textsf{15}}{\textsf{30}} \]
0.8 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 0.999 92
1 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 0.978 20
1.25 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 0.950 44
1.6 0.985 75 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 0.913 02
2 0.959 59 0.981 72 1.000 00 1.000 00 1.000 00 0.990 61 0.874 42
2.5 0.929 35 0.932 96 0.956 92 0.957 61 0.971 62 0.949 36 0.833 28
3.15 0.895 17 0.885 49 0.912 62 0.912 10 0.926 73 0.907 79 0.790 49
4 0.858 73 0.842 54 0.871 46 0.871 24 0.885 85 0.868 69 0.748 93
5 0.825 90 0.810 66 0.838 53 0.841 41 0.854 59 0.837 83 0.714 83
5.3 0.795 33 0.788 85 0.810 50 0.820 86 0.830 41 0.813 70 0.685 87
8 0.768 54 0.780 90 0.788 90 0.809 82 0.814 21 0.799 03 0.663 92
10 0.752 56 0.780 38 0.778 02 0.804 99 0.807 54 0.793 74 0.653 46
12.5 0.752 31 0.766 26 0.780 38 0.804 11 0.812 63 0.791 92 0.653 22
17 $\small{MTI_k}$ を算出 0.894 52 0.897 84 0.909 81 0.915 87 0.921 68 0.910 91 0.818 57 \[ MTI_k = \frac{\textsf{1}}{\textsf{14}}\sum^{\textsf{14}}_{m=\textsf{1}}TI_{k,\,f_m} \]
男性の音声スペクトルによる重み付け α 0.085 0.127 0.230 0.233 0.309 0.224 0.173 Table A.1 で与えられている値を利用する。
β 0.085 0.078 0.065 0.011 0.047 0.095 -
18 STI 0.902 \[ STI = \sum^\textsf{7}_{k=\textsf{1}}\alpha_k \times MTI_k - \sum^\textsf{6}_{k=\textsf{1}}\beta_k \times \sqrt{MTI_k \times MTI_{k+\textsf{1}}} \]

Table A.1 -- MTI 重み付け係数

中心周波数 [Hz] 125 250 500 1k 2k 4k 8k
男性 α 0.085 0.127 0.230 0.233 0.309 0.224 0.173
β 0.085 0.078 0.065 0.011 0.047 0.095 -

Table A.2 -- 聴覚マスキングレベル

$\small{(k-1)}$ 番目の中心周波数の音声レベル
$\small{L_{k-1}}$ [dB]
< 63 ≥ 63 かつ < 67 ≥ 67 かつ < 100 ≥ 100
$\small{k}$ 番目の中心周波数のマスキングレベル
$\small{L_{a,\,k}}$ [dB]
$\scriptsize{0.5 \times L_{k-1} -65.0}$ $\scriptsize{1.8 \times L_{k-1} -146.9}$ $\scriptsize{0.5 × L_{k-1} -59.8}$ $\scriptsize{-10}$

Table A.3 -- 最小可聴値(最小検知限)

中心周波数 [Hz] 125 250 500 1k 2k 4k 8k
最小可聴値 $\small{A_k}$ [dB] 46 27 12 6.5 7.5 8 12

Table A.4 -- 男性音声のスペクトル

中心周波数 [Hz] 125 250 500 1k 2k 4k 8k A特性
男性音声の
相対レベル [dB]
-2.5 0.5 0 -6 -12 -18 -24 0.0
Copyright(C) Architectural Institute of Japan (AIJ). All rights reserved.